
CS611 Lecture 31 Logical relations: strong normalization November 12, 2001
Scribe: Andrew Chung, Bill McCloskey Lecturer: Andrew Myers

1 Strong Normalization

Recall from before that λ→ is a typed version of the lambda calculus with lambda terms of the form

λx :τ. e

A language has the property of strong normalization if every expression can be normalized, or evaluated to
a value. The language λ→ has this property. Such languages are not as expressive as languages without strong
normalization, since the halting problem is solvable. But they are useful for more restricted applications
where termination is desirable, such as modelling the properties of other languages.

There are two ways to show that a language exhibits strong normalization. The first is to show that
the operational semantics agrees with the denotational semantics. The other is to show directly that every
expression can be normalized.

2 Agreement between SOS and Denotational Semantics

Usually, to show the two semantics agree, it is sufficient to show that e⇑ ⇐⇒ C[[` e :B]]ρ =⊥. Any other
difference between the SOS and denotational semantics can be transformed into expressions that diverge in
only one of the semantics.

The argument for equivalence can be formalized in two statements.

• Soundness: e 7−→∗ v ⇒ C[[` e : τ]]ρ = C[[` v : τ]]ρ

• Adequacy: e 7−→∗ b ⇐ C[[` e : B]]ρ = C[[` b : B]]ρ

b :B is a base value. Notice that the meanings are actually equal, and not merely equivalent, as has been the
case before. The first condition states that if e evaluates to a value in the operational semantics, then the
meaning of e is equal to the meaning of the value. The second condition only needs to be proved for base
values. If there is a difference in an expression that has a non-base type, base values can be extracted from
the term, the equivalence can be proved, and the based values can be wrapped back into the expression.

3 Proof of Strong Normalization

3.1 Logical Relations

However, a more direct statement will be proved in this lecture. It will be shown that ` e : τ ⇒ ∃v. e 7−→∗ v.
This statement will be proved using logical relations. A logical relation is a relation defined on terms and
indexed by types. e Rτ e′ is a relation on expressions e and e′ of type τ . Logical relations can be used to
prove properties of terms using induction over typing derivations.

In this case, a unary relation Rτ will be used. Rτ essentially behaves like a set, so that Rτ e ⇐⇒ e ∈ Rτ .
Rτ will be defined as the set of terms of type τ which terminate and which preserve termination behavior.
Formally,

e ∈ RB ⇐⇒ ` e : B ∧ ∃v. e 7−→∗ v

e ∈ Rτ→τ ′ ⇐⇒ ` e : τ → τ ′ ∧ ∃v. e 7−→∗ v ∧ ∀e′ ∈ Rτ . (e e′) ∈ Rτ ′

B is any of the three base types: 1, bool, or int. Note that although e may have type B, it is not necessarily
a base value, syntactically. For example, the term (λx : 1. 2) #u ∈ Rint, but it is not a base value. Also,
notice the last clause of the second condition. It states that when the function is applied to a term that
terminates, the result of the application must terminate. This clause captures the essence of the logical
relations approach.

1

3.2 A Substitution Operator

Now the goal is to prove ` e : τ ⇒ e ∈ Rτ . If this were true, it would imply ∃v. e 7−→∗ v by the definition of
Rτ . Unfortunately, it is not possible to directly prove this goal. The hypothesis is too weak, since it is only
valid in an empty typing context. But to prove the statement in a typing context Γ, a special substitution
operator will be needed to ensure that the term remains in Rτ even after substitution.

The substitution operator γ ∈ Var ⇀ Expr will be defined. In some sense, γ must agree with the typing
context Γ. Any substitution made for a variable x must have type Γ(x) and must be in RΓ(x). Define γ |= Γ
to be true when the domains of γ and Γ are equal and when ∀x ∈ dom(γ). γ(x) ∈ RΓ(x). Then define an
operator γ̂ ∈ Expr → Expr that applies the substition γ on an entire expression. Formally this operator ·̂
is defined on an arbitrary γ as follows, by structural induction:

γ̂(x) =
{

γ(x) if x ∈ dom(γ)
x otherwise

γ̂(b) = b

γ̂(e0 e1) = γ̂(e0) γ̂(e1)
γ̂(λx :τ. e) = λx :τ. γ̂x(e)

γx =
{

γ if x 6∈ dom(γ)
γ − 〈x, γ(x)〉 otherwise

Now the new goal, using the substitution operator, is Γ ` e : τ ∧ γ |= Γ ⇒ γ̂(e) ∈ Rτ . This goal is
a generalization of the previous goal, with γ = Γ = ∅. The proof of this statement will use a substitution
lemma Γ ` e : τ ∧ γ |= Γ ⇒` γ̂(e) : τ . The proof of this lemma is similar to the proof of other substitution
lemmas, and will be omitted. The substitution lemma is needed to ensure that ` γ̂(e) : τ (note the lack of
a typing context), which is required by the definition of Rτ .

Another lemma is also used in the proof below. It states that Γ ` e : τ ∧ e 7−→∗ e′ ∧ e′ ∈ Rτ ⇒ e ∈ Rτ .
If e steps to e′, and e′ terminates, then e also terminates, and types are preserved across the step. The proof
of this lemma is left as an exercise.

3.3 Proof of Strong Normalization

Recall the syntax of λ→. It will be useful during the proof.

e ::= b | x | e0 e1 | λx :τ. e

Case 1. Assume e = b, a base value. Clearly ` e : B. It is necessary to show that Γ ` b : B ∧ γ |= Γ ⇒
γ̂(b) ∈ RB . Since b is a base value, it is a value, so b 7−→∗ v = b. Therefore b = γ̂(b) ∈ RB .

Case 2. Assume e = x, a variable. It is necessary to show that Γ ` x : τ ∧ γ |= Γ ⇒ γ̂(x) ∈ Rτ .
Now since x is a variable, τ = Γ(x), and so x ∈ dom(Γ). Therefore, because γ |= Γ, γ(x) ∈ Rτ and
dom(γ) = dom(Γ). And finally, since γ̂(x) = γ(x), γ̂(x) ∈ Rτ .

Case 3. Assume e = e0 e1. It is necessary to show that Γ ` e0 e1 : τ ∧ γ |= Γ ⇒ γ̂(e0 e1) ∈ Rτ . A
typing derivation exists for Γ ` e0 e1 : τ , and it must have the form

Γ ` e0 : τ ′ → τ Γ ` e1 : τ ′

Γ ` e0 e1 : τ

Therefore, there are derivations for the two typing judgments in the antecedent of the inference rule. So,
by the induction hypothesis, γ̂(e0) ∈ Rτ ′→τ and γ̂(e1) ∈ Rτ ′ . By the definition of Rτ ′→τ , γ̂(e0 e1) =
γ̂(e0) γ̂(e1) ∈ Rτ , since γ̂(e1) ∈ Rτ ′ .

Case 4. Assume e = λx :τ. e′. It is necessary to show that

Γ ` (λx :τ. e′) : τ → τ ′ ∧ γ |= Γ ⇒ γ̂(λx :τ. e′) ∈ Rτ→τ ′

By the definition of γ̂, γ̂(λx :τ. e′) = λx :τ. γ̂x(e′), which is a value. Using the assumptions, the substitution
lemma states, ` γ̂(λx : τ. e′) : τ → τ ′. Now it’s necessary to show the extra third clause, which was used

2

in case 3. Let e′′ be any element of Rτ . The clause requires that γ̂(e) e′′ = (λx : τ. γ̂x(e′)) e′′ ∈ Rτ ′ .
By the evaluation rules (call-by-name) of λ→ , (λx : τ. γ̂x(e′)) e′′ 7−→ γ̂x(e′){e′′/x}. The second lemma
mentioned above can be used here. It states that if γ̂x(e′){e′′/x} ∈ Rτ ′ , then (λx :τ. γ̂x(e′)) e′′ ∈ Rτ ′ . Define
γ′x = γx[x → e′′] = γ[x → e′′] (since γx was just γ on all values except x). Now γ̂x(e′){e′′/x} = γ̂′x(e′), so
it’s only necessary to show that γ̂′x(e′) ∈ Rτ ′ .

By assumption, Γ ` (λx :τ. e′) : τ → τ ′. The derivation of this judgment must have the form

Γ, x :τ ` e′ : τ ′

Γ ` (λx :τ. e′) : τ → τ ′

and so there must be a derivation for Γ, x :τ ` e′ : τ ′. Now observe that γ′x |= Γ, x :τ . This is because γ |= Γ
and γ′x(x) = e′ ∈ Rτ by assumption. Therefore, by the induction hypothesis, γ̂′x(e′) ∈ Rτ ′ , which completes
the proof.

Notes: If the evaluation rules are call-by-value, this proof will still work with minor modifications. Since
e′′ ∈ Rτ ′ , it should step to a value v′′ by the definition of Rτ ′ . The rest of the proof is similar as before.

3

