1 Progress Lemma

To finish the proof of Soundness we need to prove Progress. The Progress lemma captures the idea that we cannot get stuck when evaluating a well-formed expression.

Progress Lemma: $\vdash e: \tau \Rightarrow e \in$ Value $\vee \exists e^{\prime} . e \longmapsto e^{\prime}$
Proof: We shall use induction on the typing derivation of e. Remember the definition of an expression in $\lambda \rightarrow$:

$$
e::=b|x| \lambda x \in \tau . e \mid e_{0} e_{1}
$$

So we have four cases:

- Case $e=b$: We have that $b \in$ Value .
- Case $e=x$: This case is not possible because we would have $\vdash x: \tau$ and from the empty environment we cannot assign any type to x.
- Case $e=\lambda x \in \tau_{0} . e_{1}$: We have that $e \in$ Value.
- Case $e=e_{0} e_{1}$: We know that there is a typing derivation for $\vdash e_{0} e_{1}: \tau$ and this derivation must have the form:

$$
\frac{\vdash e_{0}: \tau^{\prime} \quad \vdash e_{1}: \tau^{\prime} \rightarrow \tau}{\vdash e_{0} e_{1}: \tau}
$$

By the induction hypothesis, $e_{0} \in$ Value $\vee \exists e_{0}^{\prime} \cdot e_{0} \longmapsto e_{0}^{\prime}$ and $e_{1} \in$ Value $\vee \exists e_{1}^{\prime} \cdot e_{1} \longmapsto e_{1}^{\prime}$. We have four possibilities now:

- Both e_{0} and e_{1} are values. Since e_{0} has an arrow type, it has to be an abstraction. Say e_{0} is $\lambda x \in \tau^{\prime} . e_{2}$ and e_{1} is some value v. Then

$$
e=\left(\lambda x \in \tau^{\prime} . e_{2}\right) v \longmapsto e_{2}\{v / x\}
$$

so, $e^{\prime}=e_{2}\{v / x\}$ as desired.

- e_{0} is not a value. Then $\exists e_{0}^{\prime} . e_{0} \longmapsto e_{0}^{\prime}$ and we have

$$
\frac{e_{0} \longmapsto e_{0}^{\prime}}{e_{0} e_{1} \longmapsto e_{0}^{\prime} e_{1}}
$$

$-e_{0}$ is some value v, but e_{1} is not a value. Then $\exists e_{1}^{\prime} \cdot e_{1} \longmapsto e_{1}^{\prime}$ and we have

$$
\frac{e_{1} \longmapsto e_{1}^{\prime}}{v e_{1} \longmapsto v e_{1}^{\prime}}
$$

And this finishes the proof.

$2 \lambda^{\rightarrow *+}$

In comparison to $u F$, the language $\lambda \rightarrow$ has a lot of stuff missing. Let's add some of this stuff to the language to make it more interesting. We extend λ^{\rightarrow} to $\lambda^{\rightarrow *+}$ as follows:

$$
e::=\ldots\left|\left\langle e_{0}, e_{1}\right\rangle\right| \text { left } e \mid \text { right } e \mid \text { case } e_{0} \text { of } e_{1}\left|e_{2}\right| \operatorname{inl}_{\tau_{1}+\tau_{2}} e \mid \operatorname{inr}_{\tau_{1}+\tau_{2}} e
$$

We also extend our values

$$
v::=\lambda x \in \tau . e\left|\left\langle v_{0}, v_{1}\right\rangle\right| \operatorname{inl}_{\tau_{1}+\tau_{2}} v \mid \operatorname{inr}_{\tau_{1}+\tau_{2}} v
$$

The set of types is defined by

$$
\tau::=B \quad\left|\tau_{0} \rightarrow \tau_{1}\right| \tau_{0} * \tau_{1} \mid \tau_{0}+\tau_{1}
$$

where $\tau_{0} * \tau_{1}$ and $\tau_{0}+\tau_{1}$ are the product type and sum type of τ_{0} and τ_{1}.
Now we define the Context operational semantics. We start extending our contexts:

$$
C::=\ldots|\langle C, e\rangle|\langle v, C\rangle \mid \text { left } C \mid \text { right } C \mid \text { case } C \text { of } e_{1}\left|e_{2}\right| \operatorname{inl}_{\tau_{1}+\tau_{2}} C \mid \operatorname{inr}_{\tau_{1}+\tau_{2}} C
$$

and then we define the rules. We have the usual rule

$$
\frac{e \longmapsto_{r} e^{\prime}}{C[e] \longmapsto C\left[e^{\prime}\right]}
$$

where the redex reductions are

- $(\lambda x \in \tau . e) v \longmapsto_{r} e\{v / x\}$
- left $\left\langle v_{0}, v_{1}\right\rangle \longmapsto{ }_{r} v_{0}$
- right $\left\langle v_{0}, v_{1}\right\rangle \longmapsto_{r} v_{1}$
- case $\left(\operatorname{inl}_{\tau_{1}+\tau_{2}} v\right)$ of $e_{1} \mid e_{2} \longmapsto_{r} e_{1} v$
- case $\left(\operatorname{inr}_{\tau_{1}+\tau_{2}} v\right)$ of $e_{1} \mid e_{2} \longmapsto{ }_{r} e_{2} v$

Observe that we have constructors and destructors. The constructors construct elements of more complex types from simpler ones. For example $\langle\cdot, \cdot\rangle$ constructs elements of type $\tau_{0} * \tau_{1}$ from two elements, one of type τ_{0} and the other of type τ_{1}. The other constructors are the abstraction and the inclusions inl and inr. The destructors are the application, case, left and right operations. A redex is an expression where a constructor and its corresponding destructor meet.

Also observe that we do not need booleans in $\lambda^{\rightarrow *+}$. They can encoded as follows:

- $\llbracket \mathrm{bool} \rrbracket=1+1$
- $\llbracket \# t \rrbracket=\operatorname{inl}_{1+1} \# \mathrm{u}$
- $\llbracket \# f \rrbracket=\operatorname{inr}_{1+1} \# \mathrm{u}$
- 【if e then e_{1} else $e_{2} \rrbracket=$ case e_{0} of $\lambda x \llbracket e_{1} \rrbracket \mid \lambda x \llbracket e_{2} \rrbracket$ where x is a fresh variable.

3 Typing Rules

Now we give the typing rules for typed lambda calculus:

$$
\begin{array}{cc}
\frac{\Gamma \vdash e_{0}: \tau_{0} \quad \Gamma \vdash e_{1}: \tau_{1}}{\Gamma \vdash\left\langle e_{0}, e_{1}\right\rangle: \tau_{0} * \tau_{1}} \\
\frac{\Gamma \vdash e: \tau_{0} * \tau_{1}}{\Gamma \vdash \operatorname{left} e: \tau_{0}} & \frac{\Gamma \vdash e: \tau_{0} * \tau_{1}}{\Gamma \vdash \operatorname{right} e: \tau_{1}} \\
\frac{\Gamma \vdash e: \tau_{1}}{\Gamma \vdash \operatorname{inl}_{\tau_{1}+\tau_{2}} e: \tau_{1}+\tau_{2}} & \frac{\Gamma \vdash e: \tau_{2}}{\Gamma \vdash \operatorname{inr}_{\tau_{1}+\tau_{2}} e: \tau_{1}+\tau_{2}} \\
\frac{\Gamma \vdash e_{2}: \tau_{2} \rightarrow \tau_{3} \quad \Gamma \vdash e_{1}: \tau_{1} \rightarrow \tau_{3} \quad \Gamma \vdash e_{0}: \tau_{1}+\tau_{2}}{\Gamma \vdash \operatorname{case} e_{0} \text { of } e_{1} \mid e_{2}: \tau_{3}} &
\end{array}
$$

4 Denotational semantics

The denotational semantics for type domains are as follows:

$$
\begin{aligned}
\mathcal{T} \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket & =\mathcal{T} \llbracket \tau_{2} \rrbracket^{\mathcal{T} \llbracket \tau_{1} \rrbracket} \\
\mathcal{T} \llbracket \tau_{1} * \tau_{2} \rrbracket & =\mathcal{T} \llbracket \tau_{1} \rrbracket \times \mathcal{T} \llbracket \tau_{2} \rrbracket \\
\mathcal{T} \llbracket \tau_{1}+\tau_{2} \rrbracket & =\mathcal{T} \llbracket \tau_{1} \rrbracket+\mathcal{T} \llbracket \tau_{2} \rrbracket
\end{aligned}
$$

In the right hand side, \times and + mean mathematical product and disjoint union. Now we give the semantic function for this language:

$$
\begin{aligned}
\rho \models \Gamma \Rightarrow & \mathcal{C} \llbracket \Gamma \vdash e: \tau \rrbracket \rho \in \mathcal{T} \llbracket \tau \rrbracket \\
\mathcal{C} \llbracket \Gamma \vdash\left\langle e_{0}, e_{1}\right\rangle: \tau_{0} * \tau_{1} \rrbracket \rho= & \left\langle\mathcal{C} \llbracket \Gamma \vdash e_{0}: \tau_{0} \rrbracket \rho, \mathcal{C} \llbracket \Gamma \vdash e_{1}: \tau_{1} \rrbracket \rho\right\rangle \in \mathcal{T} \llbracket \tau_{0} * \tau_{1} \rrbracket \\
\mathcal{C} \llbracket \Gamma \vdash \text { left } e: \tau_{0} \rrbracket \rho= & \pi_{1}\left(\mathcal{C} \llbracket \Gamma \vdash e: \tau_{0} * \tau_{1} \rrbracket \rho\right) \in \mathcal{T} \llbracket \tau_{0} \rrbracket \\
\mathcal{C} \llbracket \Gamma \vdash \text { right } e: \tau_{1} \rrbracket \rho= & \pi_{2}\left(\mathcal{C} \llbracket \Gamma \vdash e: \tau_{0} * \tau_{1} \rrbracket \rho\right) \in \mathcal{T} \llbracket \tau_{1} \rrbracket \\
\mathcal{C} \llbracket \Gamma \vdash \operatorname{inl}_{\tau_{1}+\tau_{2}} e: \tau_{1}+\tau_{2} \rrbracket \rho= & \operatorname{in}_{1}\left(\mathcal{C} \llbracket \Gamma \vdash e: \tau_{1} \rrbracket \rho\right) \in \mathcal{T} \llbracket \tau_{1} \rrbracket+\mathcal{T} \llbracket \tau_{2} \rrbracket \\
\mathcal{C} \llbracket \Gamma \vdash \operatorname{inr}_{\tau_{1}+\tau_{2}} e: \tau_{1}+\tau_{2} \rrbracket \rho= & \operatorname{in}_{2}\left(\mathcal{C} \llbracket \Gamma \vdash e: \tau_{2} \rrbracket \rho\right) \in \mathcal{T} \llbracket \tau_{1} \rrbracket+\mathcal{T} \llbracket \tau_{2} \rrbracket \\
\mathcal{C} \llbracket \Gamma \vdash \text { case } e_{0} \text { of } e_{1} \mid e_{2} \rrbracket \rho= & {\operatorname{case} \mathcal{C} \llbracket \Gamma \vdash e_{0}: \tau_{1}+\tau_{2} \rrbracket \rho \text { of }} \begin{aligned}
& \operatorname{in}_{1}\left(x_{1}\right) .\left(\mathcal{C} \llbracket \Gamma \vdash e_{1}: \tau_{1} \rightarrow \tau_{3} \rrbracket \rho\right) x_{1} \\
& \mid \operatorname{in}_{2}\left(x_{2}\right) .\left(\mathcal{C} \llbracket \Gamma \vdash e_{2}: \tau_{2} \rightarrow \tau_{3} \rrbracket \rho\right) x_{2} \\
& \text { end } \in \mathcal{T} \llbracket \tau_{3} \rrbracket
\end{aligned}
\end{aligned}
$$

Just notice that the sums and products we gave above can be extended to arbitrary tuples. But this can be attained by desugaring:

$$
\begin{array}{r}
\tau_{1} * \ldots * \tau_{n}=\tau_{1} *\left(\tau_{2} * \ldots * \tau_{n}\right) \\
\left\langle e_{1}, \ldots, e_{n}\right\rangle=\left\langle e_{1},\left\langle e_{2}, \ldots, e_{n}\right\rangle\right\rangle
\end{array}
$$

Sums can be desugared similarly.

5 Add Recursion

To make the language Turing-equivalent, extend the language as follows:

$$
\begin{aligned}
& e::=\ldots \mid \operatorname{rec} y: \tau \rightarrow \tau^{\prime} .(\lambda x . e) \\
& \\
& \frac{\Gamma, x: \tau, y: \tau \rightarrow \tau^{\prime} \quad \vdash e: \tau^{\prime}}{\Gamma \vdash \operatorname{rec} y: \tau \rightarrow \tau^{\prime} .(\lambda x . e): \tau \rightarrow \tau^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{C} \llbracket \Gamma \vdash \operatorname{rec} y: \tau \rightarrow \tau^{\prime} .(\lambda x e): \tau \rightarrow \tau^{\prime} \rrbracket \rho= & \text { fix } \lambda f \in \mathcal{T} \llbracket \tau \rightarrow \tau^{\prime} \rrbracket . \\
& \lambda v \in \mathcal{T} \llbracket \tau \rrbracket \mathcal{C} \llbracket \Gamma, x: \tau, y: \tau \rightarrow \tau^{\prime} \vdash e: \tau^{\prime} \rrbracket \rho[x \mapsto v, y \mapsto f]
\end{aligned}
$$

Notice here we take a fixed point, so we need the domain $\mathcal{T} \llbracket \tau \rightarrow \tau^{\prime} \rrbracket$ to be a pointed cpo. So we need to add \perp to make this domain a pointed cpo:

$$
\begin{array}{r}
\mathcal{T} \llbracket \tau \rightarrow \tau^{\prime} \rrbracket=\mathcal{T} \llbracket \tau \rrbracket \rightarrow \mathcal{T} \llbracket \tau^{\prime} \rrbracket_{\perp} \\
\rho \models \Gamma \Rightarrow \mathcal{C} \llbracket \Gamma \vdash e: \tau \rrbracket \rho \in \mathcal{T} \llbracket \tau \rrbracket_{\perp}
\end{array}
$$

By adding recursion to this language and making the domains to be pointed cpo, we can write nonterminating program in this language. We also have to do a few changes in the definition of $\mathcal{C} \llbracket \rrbracket$ using the let construct from the meta-language to handle the \perp 's.

Example:

$$
\begin{aligned}
\mathcal{C} \llbracket \Gamma \vdash e_{0} e_{1}: \tau^{\prime} \rrbracket \rho= & \text { let } f=\mathcal{C} \llbracket \Gamma \vdash e_{0}: \tau \rightarrow \tau^{\prime} \rrbracket \rho . \\
& \text { let } v=\mathcal{C} \llbracket \Gamma \vdash e_{1}: \tau \rrbracket \rho . f(v)
\end{aligned}
$$

