
CS611 Lecture 30 Product, sums, and more. 11/9/01
Scribe: Yan Zhang and Antonio Montalban Lecturer: Andrew Myers

1 Progress Lemma

To finish the proof of Soundness we need to prove Progress. The Progress lemma captures the idea that we
cannot get stuck when evaluating a well-formed expression.

Progress Lemma: � e : τ ⇒ e ∈ Value ∨ ∃e′.e �−→ e′

Proof: We shall use induction on the typing derivation of e. Remember the definition of an expression
in λ→:

e ::= b | x | λx ∈ τ . e | e0e1

So we have four cases:

• Case e = b: We have that b ∈ Value .

• Case e = x: This case is not possible because we would have � x : τ and from the empty environment
we cannot assign any type to x.

• Case e = λx ∈ τ0 . e1: We have that e ∈ Value .

• Case e = e0 e1: We know that there is a typing derivation for � e0 e1 : τ and this derivation must have
the form:

� e0 : τ ′ � e1 : τ ′ → τ

� e0 e1 : τ

By the induction hypothesis, e0 ∈ Value ∨ ∃e′0.e0 �−→ e′0 and e1 ∈ Value ∨ ∃e′1.e1 �−→ e′1. We have
four possibilities now:

– Both e0 and e1 are values. Since e0 has an arrow type, it has to be an abstraction. Say e0 is
λx ∈ τ ′ . e2 and e1 is some value v. Then

e = (λx ∈ τ ′ . e2)v �−→ e2{v/x}

so, e′ = e2{v/x} as desired.

– e0 is not a value. Then ∃e′0.e0 �−→ e′0 and we have

e0 �−→ e′0
e0 e1 �−→ e′0e1

– e0 is some value v, but e1 is not a value. Then ∃e′1.e1 �−→ e′1 and we have

e1 �−→ e′1
v e1 �−→ v e′1

And this finishes the proof.

2 λ→∗+

In comparison to uF , the language λ→ has a lot of stuff missing. Let’s add some of this stuff to the language
to make it more interesting. We extend λ→ to λ→∗+ as follows:

e ::= ... | 〈e0, e1〉 | left e | right e | case e0 of e1|e2 | inlτ1+τ2e | inrτ1+τ2e

1

We also extend our values

v ::= λx ∈ τ . e | 〈v0, v1〉 | inlτ1+τ2v | inrτ1+τ2v

The set of types is defined by
τ ::= B | τ0 → τ1 | τ0 ∗ τ1 | τ0 + τ1

where τ0 ∗ τ1 and τ0 + τ1 are the product type and sum type of τ0 and τ1.
Now we define the Context operational semantics. We start extending our contexts:

C ::= ... | 〈C, e〉 | 〈v, C〉 | left C | right C | case C of e1|e2 | inlτ1+τ2C | inrτ1+τ2C

and then we define the rules. We have the usual rule

e �−→r e′

C[e] �−→ C[e′]

where the redex reductions are

• (λx ∈ τ . e)v �−→r e{v/x}

• left 〈v0, v1〉 �−→r v0

• right 〈v0, v1〉 �−→r v1

• case (inlτ1+τ2v) of e1|e2 �−→r e1 v

• case (inrτ1+τ2v) of e1|e2 �−→r e2 v

Observe that we have constructors and destructors. The constructors construct elements of more complex
types from simpler ones. For example 〈·, ·〉 constructs elements of type τ0 ∗ τ1 from two elements, one of type
τ0 and the other of type τ1. The other constructors are the abstraction and the inclusions inl and inr. The
destructors are the application, case, left and right operations. A redex is an expression where a constructor
and its corresponding destructor meet.

Also observe that we do not need booleans in λ→∗+. They can encoded as follows:

• [[bool]] = 1 + 1

• [[#t]] = inl1+1#u

• [[#f]] = inr1+1#u

• [[if e then e1 else e2]] = case e0 of λx[[e1]]|λx[[e2]] where x is a fresh variable.

3 Typing Rules

Now we give the typing rules for typed lambda calculus:

Γ � e0 : τ0 Γ � e1 : τ1

Γ � 〈e0, e1〉 : τ0 ∗ τ1

Γ � e : τ0 ∗ τ1

Γ � left e : τ0

Γ � e : τ0 ∗ τ1

Γ � right e : τ1

Γ � e : τ1

Γ � inlτ1+τ2e : τ1 + τ2

Γ � e : τ2

Γ � inrτ1+τ2e : τ1 + τ2

Γ � e2 : τ2 → τ3 Γ � e1 : τ1 → τ3 Γ � e0 : τ1 + τ2

Γ � case e0 of e1|e2 : τ3

2

4 Denotational semantics

The denotational semantics for type domains are as follows:

T [[τ1 → τ2]] = T [[τ2]]T [[τ1]]

T [[τ1 ∗ τ2]] = T [[τ1]]× T [[τ2]]
T [[τ1 + τ2]] = T [[τ1]] + T [[τ2]]

In the right hand side, × and + mean mathematical product and disjoint union. Now we give the
semantic function for this language:

ρ |= Γ ⇒ C[[Γ � e : τ]]ρ ∈ T [[τ]]

C[[Γ � 〈e0, e1〉 : τ0 ∗ τ1]]ρ = 〈C[[Γ � e0 : τ0]]ρ, C[[Γ � e1 : τ1]]ρ〉 ∈ T [[τ0 ∗ τ1]]
C[[Γ � left e : τ0]]ρ = π1(C[[Γ � e : τ0 ∗ τ1]]ρ) ∈ T [[τ0]]

C[[Γ � right e : τ1]]ρ = π2(C[[Γ � e : τ0 ∗ τ1]]ρ) ∈ T [[τ1]]
C[[Γ � inlτ1+τ2e : τ1 + τ2]]ρ = in1(C[[Γ � e : τ1]]ρ) ∈ T [[τ1]] + T [[τ2]]
C[[Γ � inrτ1+τ2e : τ1 + τ2]]ρ = in2(C[[Γ � e : τ2]]ρ) ∈ T [[τ1]] + T [[τ2]]

C[[Γ � case e0 ofe1|e2]]ρ = case C[[Γ � e0 : τ1 + τ2]]ρ of

in1(x1).(C[[Γ � e1 : τ1 → τ3]]ρ)x1

|in2(x2).(C[[Γ � e2 : τ2 → τ3]]ρ)x2

end ∈ T [[τ3]]

Just notice that the sums and products we gave above can be extended to arbitrary tuples. But this can
be attained by desugaring:

τ1 ∗ ... ∗ τn = τ1 ∗ (τ2 ∗ ... ∗ τn)
〈e1, ..., en〉 = 〈e1, 〈e2, ..., en〉〉

Sums can be desugared similarly.

5 Add Recursion

To make the language Turing-equivalent, extend the language as follows:

e ::= ... | rec y : τ → τ ′.(λx.e)

Γ, x : τ, y : τ → τ ′ � e : τ ′

Γ � rec y : τ → τ ′.(λx.e) : τ → τ ′

3

C[[Γ � rec y : τ → τ ′.(λx e) : τ → τ ′]]ρ = fix λf ∈ T [[τ → τ ′]].
λv ∈ T [[τ]]C[[Γ, x : τ, y : τ → τ ′ � e : τ ′]]ρ[x �→ v, y �→ f]

Notice here we take a fixed point, so we need the domain T [[τ → τ ′]] to be a pointed cpo. So we need to
add ⊥ to make this domain a pointed cpo:

T [[τ → τ ′]] = T [[τ]] → T [[τ ′]]⊥
ρ |= Γ ⇒ C[[Γ � e : τ]]ρ ∈ T [[τ]]⊥

By adding recursion to this language and making the domains to be pointed cpo, we can write non-
terminating program in this language. We also have to do a few changes in the definition of C[[·]] using the
let construct from the meta-language to handle the ⊥’s.

Example:

C[[Γ � e0 e1 : τ ′]]ρ = letf = C[[Γ � e0 : τ → τ ′]]ρ.

let v = C[[Γ � e1 : τ]]ρ.f(v)

4

