
CS611 Lecture 25 Standard (CPS) semantics and non-hierarchical scope 29 Oct 01
Scribe: Andrew Myers Lecturer: Andrew Myers

1 CPS semantics

Just as we can translate code into continuation-passing style, we can similarly use CPS to define the deno-
tational semantics of programs. This style of denotational semantics is known as continuation semantics or
standard semantics. It has the usual advantages of CPS: the resulting program description is low-level, closer
to what a compiler might generate. It is also more compact and expressive than the direct semantics; it is
better at describing non-local flows of control. To demonstrate this semantic style, we will write a standard
semantics for uF, whose syntax is repeated here:

b ::= n | #t | #f | #u

e ::= b | x | e1 ⊕ e2 | if e0 then e1 else e2 | 〈e1, e2〉 |
| first e | rest e | λx e | e1 e2 | rec y (λx e

1.1 Domain equations

As usual, the first step in getting denotational semantics right is to write down the domain equations
correctly. The rest then follows almost inevitably. We will recall that in CPS style, a continuation looks like
a function that takes in the result of previous computation and causes the rest of the computation to occur.
The result of applying a continuation is never used. We can capture this by giving continuations an arrow
domain in which the codomain has no specified structure (and hence its values cannot be used). Let Cont
be the domain of continuations:

Cont = Value → Answer

We do not actually care about the domain of Answer, although we will see that it must be pointed.
We obtain an Answer by using the special function halt ∈ Computation → Answer, where as before,
Computation = (Value + Error)⊥. A natural choice for the domain Answer, particularly if we want to
establish a connection between the direct and the standard semantics, is Answer = Computation. In this
case, we can define halt = λc ∈ Computation . c. Another choiceis to make Answer the smallest pointed
domain, 0⊥ (which is really U). In this case we define halt = λc ∈ Computation . ⊥. The point is that no
matter what domain we choose, it will have no impact on the standard semantics.

The CPS meaning function C[[e]] gives the meaning of an computation that starts from e, given an
environment to interpret its identifiers in and a continuation that captures the rest of the computation.
That is, C[[e]]ρk results in the application of k to the result of e, so the domain of the meaning function is
given by:

C[[e]] ∈ Env → Cont → Answer

C[[e]]ρk ∈ Answer

The environment ρ is the naming context for e; the continuation k is the control context for e.
Given the direct semantics meaning function CD[[·]], we expect the following correspondence between the

two semantics regardless of the choice of Answer:

halt(CD[[e]]ρ) = C[[e]]ρ(λv ∈ Value . halt(�in1(v)�)

Continuing with our uF semantics, we can repeat some of the domain equations from the previous lecture:

1

Value = U + B + Z + Pair + Function

Env = Var ⇀ Value

Error = U

Pair = Value × Value

Note that we can define environments as partial functions from names Var to values. We can straightforwardly
show by structural induction that these partial functions are applied only where they are defined, assuming
that we apply the meaning function to expressions e and environments ρ where ρ is defined on all free
variables of e. (This won’t work for dynamic scope!)

While all other values have roughly the same structure as in the direct semantics, we will now model
functions as functions with two arguments. The first argument is the ordinary argument value; the second
is the continuation where the function result is sent. Thus, the domain equation for functions is

Function = Value → Cont → Answer

1.2 Semantic function C[[·]]

We define the semantic function C[[·]] by induction on the structure of its argument, as usual. Variables and
simple constants are straightforward:

C[[#u]]ρk = k in1(u)
C[[#t]]ρk = k in2(true)
C[[#f]]ρk = k in2(false)
C[[n]]ρk = k in3(n)
C[[x]]ρk = k(ρx)

To describe more interesting computation, we will need to add some run-time error checking. This can
be done more conveniently than in the direct semantics:

C[[if e0 then e1 else e2]]ρk = C[[e0]]ρk(check-bool(λb ∈ B . if b then C[[e1]]ρk else C[[e2]]ρk))

The checking needed to ensure that the term e0 evaluates to a boolean is encapsulated in a helper function
check-bool ∈ (B → Answer) → Cont, which we can define in a manner similar to that in lecture 15. This
function expands the domain of a continuation that is only able to accept booleans so that it can accept all
values. Non-booleans cause immediate termination with an error.

check-bool
def
= λk ∈ B → Answer .

λv ∈ Value . case v of

in1(u) . halt error

| in2(b) . k(b)
| in3(n) . halt error

| . . .

end

error = �in2u�

2

We can similarly define other such functions check-X that are elements of (X → Answer) → Cont.
The rest of the semantics then closely follows the translations defined in lecture 15:

C[[〈e1, e2〉]]ρk = C[[e1]]ρ(λv1 ∈ Value . C[[e2]]ρ(λv2 ∈ Value . k in4〈v1, v2〉))
C[[left e]]ρk = C[[e]]ρ(check-pair(λp ∈ Pair . k(π1(p))))

C[[right e]]ρk = C[[e]]ρ(check-pair(λp ∈ Pair . k(π2(p))))
C[[let x = e1 in e2]]ρk = C[[e1]]ρ(λv ∈ Value . C[[e2]]ρ[x �→ v]k)

The semantics for function expressions and applications must agree with our domain equation for
Function, above:

C[[λx e]]ρk = k(λv ∈ Value . λk′ ∈ Cont . C[[e]]ρ[x �→ v]k′)
C[[e0 e1]]ρk = C[[e0]]ρ(check-function(λf ∈ Function . C[[e1]]ρ(λv ∈ Value . fvk)))

The semantics for rec are a minor tweak for those to functions. This rule makes it clear that we need
Answer to be a pointed domain, in order to take the necessary fixed point:

C[[rec y (λx e)]]ρk = k(fix λf ∈ Function . λv ∈ Value . λk′ ∈ Cont . C[[e]]ρ[x �→ v, y �→ in5(f)]k′)

2 Non-hierarchical scope: Modules

The binding constructs we have seen so far are all hierarchical in nature. Each construct establishes a parent-
child relationship between an outer context in which the declaration is not visible and an inner (body) context
in which the declaration is visible. In static scoping, the hierarchy is determined by the abstract syntax tree,
while in dynamic scoping, the hierarchy is determined by the tree of procedure calls generated at run-time.
In both these scoping mechanisms, there is no natural way to communicate a declaration laterally across the
tree-structure imposed by the hierarchy.

For small programs, this is not ordinarily a problem, but when a large program is broken into independent
pieces, or modules, the constraint of hierarchy can be a problem. Modules connect and communicate with
each other via collections of bindings; a module provides services by exporting a set of bindings, and makes
use of other modules’ services by importing bindings from those other modules. In a hierarchical language,
the scope of a binding is a single region of program, so all the clients of a module must reside in the region
where the module’s bindings are in scope.

The traditional solution to the problem of communicating modules is to use a global namespace. All
exported bindings from all modules are defined in a single environment, so all exported bindings are available
to all modules. This approach is used in languages like C or FORTRAN. A C program is a bunch of top-
level functions and in this way it is possible to call any function anywhere. A global namespace has some
major drawbacks: In order to avoid accidental name collisions, every module must be aware of all definitions
made by all other modules, even those definitions that are completely irrelevant; the dependencies between
modules are poorly documented, making intermodule dependencies difficult to track, and leading to fragile
code over time.

A way for languages to overcome the hierarchical scoping of binding constructs is to provide a value
with named subparts. For this purpose, we will introduce a new module value that bundles up a set of
bindings at one point in a program and can communicate them to a point that is related neither lexically
nor dynamically to the declarations of those bindings, Typically, a module defines a set of named values,
especially procedures, that provide a particular function. Some examples of these are: modules in ML,
objects and classes in C++ and Java, and packages in Java.

2.1 Syntax

To introduce a simple module mechanism into uF, we have to add new expression forms to uF. Our modules
will be extremely simple compared to the module mechanisms in other languages. In languages like ML and

3

Java, modules can define and export types as well as values; since we are in an untyped framework, the uF
modules will only export values. Module mechanisms usually permit the definition of both internal names
and exported names, where both kinds of names are in scope within the module, but external names may be
referenced outside the module through the use of a special expression form. Our simple modules will only
permit the definition of external names, and they may only be bound to lambda terms:

e ::= ... | module y1 = λx1 e1, . . . , yn = λxn en end | em.x | import em e

In one respect, these modules are more powerful than the modules found in most languages: they are
first-class values. We could restrict module expressions so that they could only appear in a top-level let
expression, which would make them easier to implement efficiently. However, first-class modules hold some
interest of their own.

Modules are often used to implement abstract datatypes, in which a concrete representation is chosen
for some datatype and the names exported from the module correspond to the datatype operations. For
example, we might define a module rational that implements the abstraction of rational numbers. We’ll
represent a rational number as a pair of integers, although other representations are possible:

let rational = module
create = λ p λ q 〈p,q〉,
add = λ r1 λ r2 〈left r1*right r2+right r1*left r2, right r1*right r2〉,
...

end in (rational.create 1 2) + import rational in (create 1 2)

Of course, we have no way to really defend the abstraction boundary that this module creates. Any user
of the module can take one of the rational numbers it creates and pick it apart to discover it’s actually a
pair of numbers. As we’ll see later, we can use a type system to prevent clients from misusing values of
abstract datatypes in this way. Defensible abstraction boundaries are important for practical engineering of
software, because they prevent different components of the system from becoming unnecessarily entangled.
This makes reasoning about the system easier; it also facilitates the assignment of blame when something
goes wrong!

2.2 Semantics

We need to extend the domain equations to allow new kinds of values – module values. Modules are similar
to the naming environments ρ that we use elsewhere. However, because we are in an untyped language we
have no way to prevent clients from accessing module exports that do not exist. Therefore modules must be
total functions so we can tell when we have attempted to select a component that does not exist. If module
definitions can be imported into the current naming environment, we also lose the nice property that we can
tell at ‘compile time’ what names are in scope, so the naming environment Env must be total too. Once we
introduce a typing discipline that lets us assign types to module expressions, we will be able to avoid this
run-time error checking.

Value = ... + Module

Module = Var → (Function + Unbound)
Env = Var → (Value + Unbound)

Unbound = U

We can now extend the semantic function C[[·]] to cover the next terms. In writing out the semantics,
we immediately see that there are some language design choices that are easy to overlook in an informal
presentation. One such question is whether, in a module definition, the names yi are in scope in the definition
bodies ei. If not, the semantics for a module are easily defined:

4

C[[module . . . yi = λxi ei, . . . end]]ρk = empty-module[. . . , yi �→ in1(λv ∈ Value . λk′ ∈ Cont . C[[ei]]ρk′), . . .]

The empty module empty-module ∈ Module is the module in which every name is unbound:

empty-module
def
= λx ∈ Var . in2(u)

The semantics of import and selection are readily defined using a helper function extend-with-module ∈
Env → Module → Env.

C[[em.x]]ρk = C[[em]]ρ(check-module(λm ∈ Module . case m(x) of in1(f).in5(f) | in2(u).halt error))
C[[import em in eb]]ρk = C[[em]]ρ(check-module(λm ∈ Module . C[[eb]](extend-with-module ρ m)k))

extend-with-module
def
= λρ ∈ Env . λm ∈ Module . (λx ∈ Var . case m(x) of in1(f).in1(in5(f)) | in2(u).ρ(x))

If we want the names yi to be in scope within the module itself, we need to take a fixed point to construct
the module, because the environment that the ei’s are interpreted with respect to must be extended with
the yi’s. This is similar to the problem of defining the semantics of other mechanisms for mutual recursion
such as let rec. The obvious approach is to wrap a fix around the definition just given:

C[[module . . . yi = λxi ei, . . . end]]ρk =
fix λm ∈ Module . empty-module[. . . , yi �→ in1(λv ∈ Value . λk′ ∈ Cont . C[[ei]](extend-with-module ρ m)k′), . . .]

However, this approach doesn’t quite work because Module isn’t pointed: its codomain is a sum. To avoid
this problem, we observe that the module being defined can only be used within itself in a particular, limited
way: to access its components yi. Therefore, we can just take a fixed point over the tuple of the components,
which is a pointed domain:

C[[module . . . yi = λxi ei, . . . end]]ρk =
let t = fix λt′ ∈ Function × . . . × Function .
〈. . . , λv ∈ Value . λk′ ∈ Cont . C[[ei]]ρ[y1 �→ π1(t′), . . . , yn �→ πn(t′)]k′, . . .〉

in
empty-module[y1 �→ π1t, . . . , yn �→ πnt]

Note that this wouldn’t work if the domain of the components, Function, were not itself pointed. At least
in a CBV language, mutually recursive module components are difficult to support if they can be bound to
arbitrary expressions.

5

