
CS611 Lecture 24 Denotational Semantics of uF 2001 October 26
Scribe: Eric Breck and Junhwan Kim Lecturer: Andrew Myers

1 Semantics of REC (conclusion)

The language uF presented in class is a call-by-value, left-to-right, eager, untyped functional language.

1.1 Definition

Recall our definition of the language REC, where e represents an expression, and d represents all the function
definitions:

prog ::= let d in e

d ::= f1(x1, . . . , xa1), · · · , fn(x1, . . . , xan)
e ::= n | x | e0 ⊕ e1 | let x = e1 in e2 | fi(e1, · · · , eai) | ifz e0 then e1 else e2

1.2 Semantics

We didn’t explore a semantics of the language in which all functions could refer to each other (with either
lazy or eager evaluation).

1.2.1 Eager Semantics

Recall the types of our translations.

C[[e]] ∈ FEnv → Env → Z⊥
φ ∈ FEnv = (Za1 → Z⊥)× · · · × (Zan → Z⊥)

Env = Var → Z

(Recall that this is slightly different for lazy semantics: the domain of each function must be Z⊥ instead
of Z so that it can accept nonterminating computations).
The semantics for the program let d in e will be some translation of the form C[[e]]D[[d]]φ.
Consider the φ that we want. It will have the form φ = 〈F1, ..., Fn〉. If we already had φ, then we could

define

Fi = λv1 ∈ Z, . . . , vai ∈ Z.C[[e]]φ[x1 �→ v1, . . . , xai �→ vai].

This expression is closed except for φ. Think of Fi as a function of φ. Then, D[[d]] = φ = 〈F1(φ), . . .〉
Then we need to take a fixed point:

F(φ) = λφ ∈ FEnv.〈F1(φ), . . . , Fn(φ)〉
D[[d]] = fix F

Is this well-defined? F needs to be continuous — it is, because we constructed it with our metalanguage.
In addition, the domain needs to be pointed (the domain here is FEnv).

FEnv is a product domain, and a product domain is pointed if each element of the tuple is pointed. Each
element here is a function domain, and a function domain is pointed if its codomain is pointed. This is true
here because the codomain of each function is Z⊥.
The ⊥ of FEnv is this:

⊥φ = 〈λv1 ∈ Z, . . . λva1 ∈ Z.⊥, λv1 ∈ Z, . . . λva2 ∈ Z.⊥, . . .〉

1

1.2.2 Aside on fixed points

Consider drawing a graph of the fixed point equation. One could draw an infinite graph, but from the point
of view of someone traversing the graph, this would be equivalent to a graph with a cycle. This is how it
would be implemented, and actually all fixed points are in some sense about cycles in graphs.
Fixed points in compilers typically correspond to a placeholder where you have to go back and stick in

something when you figure it out.

1.2.3 Lazy semantics

Recall in the previous REC semantics we just had to adjust the functions so that their domains are lifted
(Zai

⊥). We do the same here.

2 Denotational Semantics of uF

Now we want to use what we have learned to write denotational semantics for a language with higher-order
functions — in particular, uF.

2.1 Definition

b ::= #u | #t | #f | n | s

e ::= b | x | e0 ⊕ e1 | if e0 then e1 else e2 | 〈e1, e2〉 | left e | right e | λx e | e0 e1

| rec y (λx e) | let x = e1 in e2

2.2 Domains

uF is more complex than REC. A value is much more complicated thing, not just a number, but also now a
pair, function, boolean value, or a string. So the domain of values is a sum domain of all these possibilities:

Value = U+ B+ Z+ String+ Pair+ Function

Our translation of expressions takes the form C[[e]]ρ, where ρ ∈ Env = Var ⇀ Value. It is a partial
function that maps free variables of e to their values. We will only ask for the meaninings of expressions e
in environments ρ where FV [[e]] ∈ dom(ρ).
What is the domain of C[[e]]ρ?

Computation = (Value+ Error)⊥

How do we define Error? There are many ways, but the simplest is

Error = U

How do we distinguish the Value unit rather than the Error unit? We will know because of the the injection
functions:

C[[#u]]ρ = �in1(in1(u))�
error = �in2(u)�

We define the remaining domains as follows:

String = Z (since the integers are rich enough to represent all strings.)
Pair = Value × Value

Function = Value → Computation

2

2.3 Domain Equations

There is something very fishy here. These definitions are circular. That is because these aren’t definitions –
they are equations that we would like our domains to satisfy. We have not seen yet how to find solutions to
domain equations. We will not talk right now about finding these solutions, but rather assert that a solution
is findable.

2.4 Translations

Given that we have domains that solve these equations, we can write down semantics. The translations for
unit and error are given above.
Some translations are easy:

C[[#t]] = �in1(in2(true))�
C[[#f]] = �in1(in2(false))�
C[[n]] = �in1(in3(n))�
C[[s]] = �in1(in4(s′))� where s′ is our integer representation of the string s.

C[[x]]ρ = �ρx�
For translation of something that actually does computation, it gets a little more complicated.

C[[e0 ⊕ e1]]ρ =
let x1 = C[[e1]]ρ.
case x1 of

in1(v).case v of
| in1(u).error
| in2(b).error
| in3(n1).let x2 = C[[e2]]ρ in case x2 of

in1(u).error |
in2(b).error |
in3(v2).�(in3(v1 ⊕ v2)�

| in2(e).error
. . . and there are even more cases.

2.4.1 ecase

How do we avoid this nastiness? We can do continuation-passing semantics and use error-checkers that
terminate computation if we have an error. But that is too hard and distracting just now. So we will
introduce a new metalanguage statement ecase

ecase e of
(pattern-matching expression) . value

• strict in e as long as domain is pointed

• any missing cases go to the error result
• we can do multi levels of cases at once — deep matching, as in ML

2.4.2 if-then-else

C[[if e0 then e1 else e2]]ρ =
ecase C[[e0]]ρ of

�in1(in2(true))�.C[[e1]]ρ
| �in1(in2(false))�.C[[e2]]ρ

end
And all other cases become errors, as ecase is ‘compiled’ down into case.

3

2.4.3 Pairs, Left, and Right

C[[〈e1, e2〉]]ρ = ecase C[[e1]]ρ of in1(v1). ecase C[[e2]]ρ of in1(v2).�in1(in5(〈v1, v2〉))�
C[[left e]]ρ = ecase C[[e]]ρ of in1(in5(p)).�in1(π1p)�

C[[right e]]ρ = ecase C[[e]]ρ of in1(in5(p)).�in1(π2p)�

2.4.4 Functions

C[[λx e]]ρ = �in1(in6(λv ∈ Value.C[[e]]ρ[x �→ in1(v)]))�

2.4.5 Applications

C[[e0 e1]]ρ = ecase C[[e0]]ρ of in1(in6(f)).ecase C[[e1]]ρ of in1(v).f v

Note that one of the things ecase being strict in e means is that we do not have to write lift around the
cases.

2.4.6 Recursive Functions

C[[rec y(λx e)]] = �in1(in6(fix λf ∈ Function.λv ∈ Value.C[[e]]ρ[x �→ in1(v), y �→ in1(in6(f))].))�

Are we allowed to take this fixed point? The function is continuous, but is the cpo pointed? Function is
pointed if its codomain Computation is pointed — which it is, so this is OK.

2.4.7 Notes on error-checking direct semantics for uF

It looks a lot like the call-by-value λ-calculus translation, but also includes the injection functions. One nice
thing here is that the domain equations help keep you honest. Once you have set up the domain equations,
the rest is sort of forced on you because you have to write something that ‘typechecks.’

2.5 Nontermination

The fact that this language does not always terminate showed up in a couple of places.
For example, recursive functions that call themselves. (rec y(λx y x)). We had to take a fixed point to

define rec, introducing a bottom element ⊥.
Actually, of course we can write nonterminating programs without the rec construct. We did not take a

fixed point to define function abstraction and application. So did we need pointed domains? Yes, because
we need to solve the domain equations. To solve domain equations, in general uses of the → constructor
must have a pointed codomain. Hence, Function must be pointed.

4

