
CS611 Lecture 19 The Fixed Point Theorem 9/20/00
Scribe: based on notes by Reba Schuller and Yuval Gabay Lecturer: Andrew Myers

1 Review

Goal: We want to define C[[while b do c]] to be the least fixed point of F where

F = λf ∈ Σ → Σ⊥. λσ ∈ Σ. if ¬B[[b]]σ then σ else strict(f, C[[c]]σ)

where we define strict as follows:

strict
def
= λf ∈ Σ → Σ⊥, σ̄ ∈ Σ⊥. if σ̄ = ⊥ then ⊥ else f(σ̄)

Since the functions Fn(⊥) approximate the desired result arbitrarily closely, we suspect that the following
denotation might be what we want:

C[[while b do c]] =
⊔

n∈ω

Fn(⊥)

Problems:

• The least upper bound might not exist. Σ → Σ⊥ is a cpo, which ensures that every chain has a LUB.
What if the functions Fn(⊥) do not form a chain?

• Assuming the LUB exists, it might not be a fixed point of F, let alone the least one.

Solution: We introduce some conditions under which the LUB exists and equals the least fixed point, and
then we show that these conditions hold for our F.

2 Monotonicity and Continuity

Definition: Let (D,�) be a cpo, F : D → D a function. F is monotonic if

∀x, y ∈ D x � y → F (x) � F (y).

Claim: If (D,�,⊥) is a pointed cpo and F : D → D is monotonic then the elements Fn(⊥) form an
increasing chain in D:

⊥� F (⊥) � F 2(⊥) � . . .

Proof: Since ⊥ is the least element of D, we have

⊥� F (⊥).

Monotonicity of F gives

∀n ∈ ω Fn(⊥) � Fn+1(⊥) ⇒ Fn+1(⊥) � Fn+2(⊥).

The result follows by induction.

Notice that if F : D → D is monotonic and x0 � x1 � x2 � . . . is a chain in D, then F (x0) � F (x1) �
F (x2) � . . . is also a chain in D. This permits the following definition.

1



Definition: Let (D,�) be a cpo, F : D → D a monotonic function. F is continuous if for every chain

x0 � x1 � x2 � . . .

in D, F preserves the LUB operator:
⊔

n∈ω

F (xn) = F (
⊔

n∈ω

xn).

3 The Fixed Point Theorem

We will now show that the properties of monotonicity and continuity allow us to compute the least fixed
point as desired.

Claim: Let (D,�) be a cpo, and let F : D → D be a monotonic continuous function. Then
⊔

n∈ω Fn(⊥)
is a fixed point of F .

Proof: By continuity of F ,
F (

⊔

n∈ω

Fn(⊥)) =
⊔

n∈ω

F (Fn(⊥))

Applying F ,
=

⊔

n∈ω

Fn+1(⊥)

Reindexing,
=

⊔

n=1,2,...

Fn(⊥)

By definition of ⊥,
= ⊥ �

⊔

n=1,2,...

Fn(⊥)

And, finally, absorbing the join with ⊥ into the big join,

=
⊔

n∈ω

Fn(⊥)

We now know that monotonicity and continuity guarantee that
⊔

n∈ω Fn(⊥) is a fixed point of F . We
also want

⊔
n∈ω Fn(⊥) to be the least fixed point of F . To show this, we must prove that y = F (y) ⇒⊔

n∈ω Fn(⊥) � y. We can actually prove something even stronger.

Definition: Let (D,�) be a cpo, F : D → D a function. x ∈ D is a prefixed point of F if F (x) � x.

Notice that every fixed point of F is also a prefixed point. As a consequence, if a fixed point of F is the
least prefixed point of F, it is also the least fixed point of F.

Claim: Let (D,�,⊥) be a pointed cpo. For any monotonic continuous function, F : D → D,
⊔

n∈ω Fn is
the least prefixed point of F .

2



Proof: Suppose y is a prefixed point of F . By definition of ⊥,

⊥ � y

Taking F of both sides,
F (⊥) � F (y) � y

Inductively, for all n ≥ 0,
Fn(⊥) � y

Because y is an upper bound for all the Fn(⊥), it must be at least as large as their least upper bound:
⊔

n∈ω

Fn(⊥) � y

We have now proven:

The Fixed Point Theorem: Let (D,�,⊥) be a pointed cpo. For any monotonic continuous function,
F : D → D,

⊔
n∈ω Fn is the least fixed point of F .

We have actually encountered an instance of the fixed point theorem before. Recall lecture 6, when we
defined the set of all elements derivable in some rule system to be the least fixed point of the rule operator,
R. Our proof in that case was an instantiation of the fixed point theorem on the CPO consisting of all
subsets of a set, ordered by set inclusion:

R = F

∅ = ⊥
⋃

=
⊔

⊆=�
The tricky part of the earlier proof corresponded to showing that R is a continuous operator, which was true
because we only allow inference rules with a finite number of premises.

4 Reinterpreting →
Because we are mostly interested in continuous functions in this course, we will from now on interpret the
notation D → E as denoting the continuous functions from D to E rather than all functions from D to E
(which can be written as ED, as before).

5 Back to while

Now we can finally complete the denotational semantics of IMP. We define the meaning of a while statement
as:

C[[while b do c]] = fixΣ→Σ⊥ λf ∈ Σ → Σ⊥. λσ ∈ Σ. if ¬B[[b]]σ then σ else strict(f, C[[c]]σ)

where the least fixed point operator on domain D, fixD, is defined as follows:

fix
def
= λf ∈ D → D.

⊔

n∈ω

fn(⊥)

3



To check this definition, consider the denotation of while true do skip, which we expect to be λσ ∈ Σ.⊥:

C[[while true do skip]] = fixΣ→Σ⊥ λf ∈ Σ → Σ⊥. λσ ∈ Σ. if ¬B[[b]]σ then σ else strict(f, C[[c]]σ)
= fixΣ → Σ⊥ λf ∈ Σ → Σ⊥. λσ ∈ Σ. strict(f, C[[c]]σ)
= fixΣ→Σ⊥ λf ∈ Σ → Σ⊥. λσ ∈ Σ. f(σ)
= fixΣ→Σ⊥ λf ∈ Σ → Σ⊥. f

The function we are taking the fixed point of is the identity function, and its least fixed point is ⊥Σ→Σ⊥ ,
which is what fix will give us.

Now let us verify that our definition of the meaning of while works by checking that F is continuous.
First of all, F must be monotonic. Consider an arbitrary pair of functions f , f ′ where f � f ′. We want to
show that F (f) � F (f ′), which is true iff for all σ, F (f)(σ) � F (f ′)(σ). Consider an arbitrary σ. If ¬B[[b]]σ
or C[[c]]σ = ⊥, the required relationship holds trivially. Otherwise, we require f(C[[c]]σ) � f ′(C[[c]]Σ), which
follows from f � f ′.

For F to be continuous, we also must have
⊔

n F (fn) = F (
⊔

n fn) for all chains fn. This also follows
straightforwardly:

⊔
F (fn) =

⊔
λσ ∈ Σ. if ¬B[[b]]σ then σ else strict(fn, C[[c]]σ)

= λσ ∈ Σ.
⊔

if ¬B[[b]]σ then σ else strict(fn, C[[c]]σ)

= λσ ∈ Σ. if ¬B[[b]]σ then σ else
⊔

strict(fn, C[[c]]σ)

= λσ ∈ Σ. if ¬B[[b]]σ then σ else
⊔

strict(fn, C[[c]]σ)

= λσ ∈ Σ. if ¬B[[b]]σ then σ else
⊔

(if C[[c]]σ = ⊥ then ⊥ elsefn(C[[c]]σ))

= λσ ∈ Σ. if ¬B[[b]]σ then σ else
⊔

(if C[[c]]σ = ⊥ then ⊥ elsefn(C[[c]]σ))

= λσ ∈ Σ. if ¬B[[b]]σ then σ else (if C[[c]]σ = ⊥ then ⊥ else
⊔

fn(C[[c]]σ))

= λσ ∈ Σ. if ¬B[[b]]σ then σ else if C[[c]]σ = ⊥ then ⊥ else
⊔

fn(C[[c]]σ)

= λσ ∈ Σ. if ¬B[[b]]σ then σ else if C[[c]]σ = ⊥ then ⊥ else (
⊔

fn)(C[[c]]σ) (defn of join on fcns)

= F (
⊔

fn)

This process is simple but tedious. However, if we later decide to change any part of our definitions of any
commands (c) or boolean expressions (b), we would have to prove that the resulting modified F still satisfied
these properties. So, a more general method is desirable. Next time, we will define a set of constructs that
always yield continuous functions.

4


