Lecturer: Andrew Myers

9-18-00

Scribe: Chris Hardin, Michael Clarkson

1 Trouble with while

If we try to define $\mathcal{C}[\![\mathbf{while}\ b\ \mathbf{do}\ c]\!]$ in the obvious manner, we get

$$\mathcal{C}[\![\mathbf{while}\ b\ \mathbf{do}\ c]\!]\sigma = if\ \neg \mathcal{B}[\![b]\!] \quad then \quad \sigma \\ else \quad if\ \mathcal{C}[\![c]\!]\sigma = \perp \quad then\ \perp \\ else\ \mathcal{C}[\![\mathbf{while}\ b\ \mathbf{do}\ c]\!](\mathcal{C}[\![c]\!]\sigma)$$

However, $\mathcal{C}[\![\mathbf{while}\ b\ \mathbf{do}\ c]\!]$ appears on both sides—this is really an equation, not a definition¹. Looking at this more generally, $\mathcal{C}[\![\mathbf{while}\ b\ \mathbf{do}\ c]\!]$ is a solution to the equation

$$x = F(x)$$

where

$$F = \lambda f \in \Sigma \to \Sigma_{\perp}. \lambda \sigma \in \Sigma_{\perp}. \text{ if } \neg \mathcal{B} \llbracket b \rrbracket \text{ then } \sigma \text{ else } f(\mathcal{C} \llbracket c \rrbracket \sigma).$$

(F is simplified here slightly, by ignoring the case where c fails to terminate.) What we would like to do is define

$$\mathcal{C}[\![\mathbf{while}\ b\ \mathbf{do}\ c]\!] = fix(F)$$

$$= fix(\lambda f \in \Sigma \to \Sigma_{\perp}.\ \lambda \sigma \in \Sigma.\ if\ \neg \mathcal{B}[\![b]\!]\sigma\ then\ \sigma\ else\ f(\mathcal{C}[\![c]\!]\sigma))$$

But which fixed point of F do we want? We would like to take the "least" fixed point, in the sense that we want $C[\![\mathbf{while}\ b\ \mathbf{do}\ c]\!]$ to give a non- \bot result only when required by the intended semantics. (For example, we want $C[\![\mathbf{while}\ b\ \mathbf{do}\ \mathbf{skip}]\!]\sigma = \bot$ for all σ .) The rest of this lecture will expand on this notion of least fixed point, with a look at the underlying theory of partial orders.

Iterating F applied to some "minimal" functio $f_{\perp} = \lambda \sigma$. \perp allows us to create a sequence of successively better approximations for $\mathcal{C}[\![\mathbf{while}\ b\ \mathbf{do}\ c]\!]$:

The "limit" of this sequence will be the denotation of **while** b **do** c. To take this "limit", we will consider the approximations as an increasing sequence $f_0 \leq f_1 \leq f_2 \leq \cdots$, and then take the least upper bound. We must first study partial orders to get the needed machinery.

¹It's important to point out here that our denotations will be defined by structural induction, so that it is okay in this case to assume that $\mathcal{B}[\![b]\!]$ and $\mathcal{C}[\![c]\!]$ are defined.

2 Partial Orders

A partial order (also known as a partially ordered set or poset) is a pair (S, \sqsubseteq) , where

- \bullet S is a set of elements.
- \sqsubseteq is a relation on S which is:

```
 \begin{array}{l} i. \ \ \text{reflexive:} \ x \sqsubseteq x \\ ii. \ \ \text{transitive:} \ (x \sqsubseteq y \land y \sqsubseteq z) \Rightarrow x \sqsubseteq z \\ iii. \ \ \text{antisymmetric:} \ (x \sqsubseteq y \land y \sqsubseteq x) \Rightarrow x = y \\ \end{array}
```

Examples:

- (\mathbf{Z}, \leq) , where **Z** is the integers and \leq is the usual ordering.
- $(\mathbf{Z}, =)$ (Note that unequal elements are incomparable in this order. Partial orders ordered by the identity relation, =, are called discrete.)
- $(2^S, \subseteq)$ (Here, 2^S denotes the powerset of S, the set of all subsets of S, often written $\mathcal{P}(S)$, and in Winskel, $\mathcal{P}ow(S)$.)
- $(2^S,\supseteq)$
- (S, \supseteq) , if we are given that (S, \sqsubseteq) is a partial order.
- $(\omega, |)$, where $\omega = \{0, 1, 2, \ldots\}$ and $a|b \Leftrightarrow (a \text{ divides } b) \Leftrightarrow (b = ka \text{ for some } k \in \omega)$. Note that for any $n \in \omega$, we have n|0; we call 0 an upper bound for ω (but only in this ordering, of course!).

Non-examples:

- $(\mathbf{Z}, <)$ is not a partial order, because < is not reflexive.
- (**Z**, \sqsubseteq), where $m \sqsubseteq n \Leftrightarrow |m| \le |n|$, is not a partial order because \sqsubseteq is not anti-symmetric: $-1 \sqsubseteq 1$ and $1 \sqsubseteq -1$, but $-1 \ne 1$.

The "partial" in partial order comes from the fact that our definition does not require these orders to be total; e.g., in the partial order $(2^{\{a,b\}},\subseteq)$, the elements $\{a\}$ and $\{b\}$ are incomparable: neither $\{a\}\subseteq\{b\}$ nor $\{b\}\subseteq\{a\}$ hold.

Hasse diagrams Partial orders can be described pictorially using *Hasse diagrams*². In a Hasse diagram, each element of the partial order is displayed as a (possibly labeled) point, and lines are drawn between these points, according to these rules:

- 1. If x and y are elements of the partial order, and $x \sqsubseteq y$, then the point corresponding to x is drawn lower in the diagram than the point corresponding to y.
- 2. A line is drawn between the points representing two elements x and y iff $x \sqsubseteq y$ and $\neg \exists z$ in the partial order, distinct from x and y, such that $x \sqsubseteq z$ and $z \sqsubseteq y$ (i.e., the ordering relation between x and y is not due to transitivity).

An example of a Hasse diagram for the partial order on the set $2^{\{a,b,c\}}$ using \subseteq as the binary relation is:

²Named after Helmut Hasse, 1898-1979. Hasse published fundamental results in algebraic number theory, including the Hasse (or "local-global") principle. He succeeded Hilbert and Weyl as the chair of the Mathematical Institute at Göttingen.

Least upper bounds Given a partial order (S, \sqsubseteq) , and a subset $B \subseteq S$, y is an upper bound of B iff $\forall x \in B.x \sqsubseteq y$. In addition, y is a least upper bound iff y is an upper bound and $y \sqsubseteq z$ for all upper bounds z of B. We may abbreviate "least upper bound" as LUB or lub. We shall notate the LUB of a subset B as $\bigsqcup B$. We may also make this an infix operator, as in $\bigsqcup \{x_1, \ldots, x_m\} = x_1 \sqcup \ldots \sqcup x_m$.

Chains A chain is a pairwise comparable sequence of elements from a partial order (i.e., elements $x_0, x_1, x_2 \dots$ such that $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \dots$). For any finite chain, its LUB is its last element $(e.g., \bigsqcup \{x_0, x_1, \dots, x_n\} = x_n)$. Infinite chains (Winskell: ω -chains) may also have LUBs.

Complete partial orders A complete partial order (cpo or CPO) is a partial order in which every chain has a LUB. Note that the requirement for every chain is trivial for finite chains (and thus finite partial orders) – it is the infinite chains that can cause trouble.

Some examples of cpos:

- $(2^S, \subseteq)$ Here S itself is the LUB for the chain of all elements.
- $(\omega \cup \{\infty\}, \leq)$ Here ∞ is the LUB for any infinite chain: $\forall w \in \omega. w \leq \infty$.
- ([0,1], \leq) where [0,1] is the closed continuum, and 1 is a LUB for infinite chains. Note that making the continuum open at the top [0,1) would cause this to no longer be a cpo, since there would be no LUB for infinite chains such as $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots$
- (S, =) This is a discrete cpo, just as it is a discrete partial order. The only infinite chains are of the sort $x_i \sqsubseteq x_i \sqsubseteq x_i \ldots$, of which x_i is itself a LUB.

Even if (S, \sqsubseteq) is a cpo, (S, \supseteq) is not necessarily a cpo. Consider $((0,1], \leq)$, which is a cpo. Reversing its binary relation yields $((0,1], \geq)$ which is not a cpo, just as $([0,1), \leq)$ above was not.

CPOs can also have a least element, written \bot , such that $\forall x.\bot \sqsubseteq x$. We call a cpo with such an element a pointed cpo. Winskel instead uses cpo with bottom.

3 Least fixed points of functions

Recall that at the end of the last lecture we were attempting to define the least fixed point operator fix over the domain $(\Sigma \to \Sigma_{\perp})$ so that we could determine calculate fixed points of $F: (\Sigma \to \Sigma_{\perp}) \to (\Sigma \to \Sigma_{\perp})$. It was unclear, however, what the "least" fixed point of this domain would be – how is one function from states to states "less" than another? We've now developed the theory to answer that question.

We define the ordering of states by information content: $\sigma \sqsubseteq \sigma'$ iff σ gives less (or at most as much) information than σ' . Non-termination is defined to provide less information than any other state: $\forall \sigma \in \Sigma$. $\sqsubseteq \sigma$. In addition, we have that $\sigma \sqsubseteq \sigma$. No other pairs of states are defined to be comparable. The lifted set of possible states Σ_{\perp} can now be characterized as a flat cpo (a lifted discrete cpo):

- Its elements are elements of $\Sigma \cup \{\bot\}$.
- The ordering relation

 satisfies the reflexive, transitive, and anti-symmetric properties.

• There are three types of infinite chains, each with a LUB:

1.
$$\bot \sqsubseteq \bot \sqsubseteq \ldots$$
, LUB = \bot

2.
$$\sigma \sqsubseteq \sigma \sqsubseteq \ldots$$
, LUB = σ

3.
$$\bot \Box \bot \Box ... \Box \sigma \Box \sigma \Box ...$$
, LUB = σ

4 Functions

We are now ready to define an ordering relation on functions. Functions will be ordered using a *pointwise* ordering on their results. Given a cpo E, a domain D, $f \in D \to E$, and $g \in D \to E$:

$$f \sqsubseteq_{D \to E} g \stackrel{def}{\iff} \forall x \in D. f(x) \subseteq_E g(x)$$

Note that we are defining a new partial order over $D \to E$, and that this cpo is pointed if E is pointed, since $\perp_{D \to E} = \lambda x \in D. \perp_E$.

As an example, consider two functions $\mathbf{Z} \to \mathbf{Z}_{\perp}$:

$$f = \lambda x \in \mathbf{Z}.\mathbf{if} x = 0 \mathbf{then} \perp \mathbf{else} x$$

 $g = \lambda x \in \mathbf{Z}.x$

We conclude $f \sqsubseteq g$ because $f(x) \sqsubseteq g(x)$ for all x; in particular, $f(0) = \bot \sqsubseteq 1 = g(0)$.

If E is a cpo, then the function space $D \to E$ is also a cpo. We show that given a chain of functions $f_1 \sqsubseteq f_2 \sqsubseteq f_3 \ldots$, the function $\lambda d \in D. \bigsqcup_{n \in \omega} f_n(d)$ is a least upper bound for this chain. Consider any function g that is an upper bound for all the f_n . In that case, we have:

$$\forall n \in \omega. \forall d \in D. f_n(d) \sqsubseteq g(d)$$

$$\iff \forall d \in D. \forall n \in \omega. f_n(d) \sqsubseteq g(d)$$

Because the f_n form a chain, so do the $f_n(d)$, and because E is a cpo, it has a least upper bound that is necessarily less than the upper bound g(d):

$$\Rightarrow \forall d \in D.(\bigsqcup_{n \in \omega} f_n(d)) \sqsubseteq g(d)$$

$$\iff \forall d \in D(\bigsqcup_{n \in \omega} f_n)(d) \sqsubseteq g(d)$$

$$\iff \bigsqcup_{n \in \omega} f_n \sqsubseteq g$$

Therefore, $D \Rightarrow E$ is a cpo under the pointwise ordering.

5 Back to while

It's now time to unify our dual understanding of the denotation of **while** as both a limit and a fixed point. We previously defined the denotation of **while** as both:

$$\mathcal{C}[\![\mathbf{while}\ b\ \mathbf{do}\ c]\!] = fix(F)$$

= limit of $F^n(\bot)$

However, we did not know how to define the fix operator over the range of F, nor did we have a definition for the least fixed point of F to take as its limit. CPOs have given us the machinery to handle these definitions now.

We assert that:

$$\mathcal{C}[\![\mathbf{while}\,b\,\mathbf{do}\,c]\!] = \bigsqcup_{n \in \omega} F^n(\bot)$$

As an example to give us confidence that this is the correct definition, we see that:

$$\begin{array}{lll} \mathcal{C}[\![\mathbf{while \, true \, do \, skip}]\!] & = & \bigsqcup_{n \in \omega} F^n(\bot) \\ & = & \bot_{\Sigma \to \Sigma_\bot} \\ & = & \lambda \sigma \in \Sigma.\bot \end{array}$$

As we begin to construct a proof that this denotation is correct, we want to show that this limit, or LUB, is a least fixed point of F. That is, we want to show that

$$\bigsqcup_{n\in\omega}F^n(\bot)$$

is the least solution to

$$x = F(x)$$

This will not be true for arbitrary F! We need F to be both monotonic and continuous. Consider a non-monotonic F:

$$F(x) = \mathbf{if} \ x = \bot \mathbf{then} \ 1$$

else $\mathbf{if} \ x = 1 \mathbf{then} \ \bot$
else $\mathbf{if} \ x = 0 \mathbf{then} \ 0$

Although 0 is clearly a fixed point of this F, $F^n(\bot)$ is not a chain (the elements cycle between \bot and 1), and so we cannot take the LUB of it. Monotonicity would avoid this problem.

Even monotonicity is not enough. Consider a monotonic but non-continuous F defined over the complete partial order $(\mathbf{R} \cup \{-\infty, \infty\}, <)$:

$$F(x) = \mathbf{if} x < 0 \mathbf{then} \tan^{-1}(x) \mathbf{else} 1$$

The least fixed point of this F is 1. However,

$$F^{1}(\bot) = \tan^{-1}(-\infty) = -\frac{\pi}{2}$$

 $F^{2}(\bot) = \tan^{-1}(-\frac{\pi}{2}) = \dots$

For x < 0, F(x) > x and F(x) < 0: $F^n(\bot)$ is a chain that approaches 0 arbitrarily closely: its LUB is 0. But F(0) = 1, so the LUB is not a fixed point! The least fixed point of this monotonic function is actually 1 = F(1). The problem with this function F is that it is not continuous at 0. In general, we will look for some form of *continuity* in F for fix to guarantee that the LUB formula gives us a (least) fixed point.