1 Trouble with while

If we try to define $\mathcal{C} \llbracket$ while b do $c \rrbracket$ in the obvious manner, we get

$$
\begin{array}{lll}
\mathcal{C} \llbracket \text { while } b \text { do } c \rrbracket \sigma=\text { if } \neg \mathcal{B} \llbracket b \rrbracket & \text { then } & \sigma \\
& \text { else } & \text { if } \mathcal{C} \llbracket c \rrbracket \sigma=\perp \text { then } \perp \\
& \text { else } \mathcal{C} \llbracket \text { while } b \text { do } c \rrbracket(\mathcal{C} \llbracket c \rrbracket \sigma)
\end{array}
$$

However, $\mathcal{C} \llbracket$ while b do $c \rrbracket$ appears on both sides-this is really an equation, not a definition ${ }^{1}$. Looking at this more generally, $\mathcal{C} \llbracket$ while b do $c \rrbracket$ is a solution to the equation

$$
x=F(x)
$$

where

$$
F=\lambda f \in \Sigma \rightarrow \Sigma_{\perp} \cdot \lambda \sigma \in \Sigma_{\perp} . \text { if } \neg \mathcal{B} \llbracket b \rrbracket \text { then } \sigma \text { else } f(\mathcal{C} \llbracket c \rrbracket \sigma) \text {. }
$$

(F is simplified here slightly, by ignoring the case where c fails to terminate.) What we would like to do is define

$$
\begin{aligned}
\mathcal{C} \llbracket \text { while } b \text { do } c \rrbracket & =\text { fix }(F) \\
& =\text { fix }\left(\lambda f \in \Sigma \rightarrow \Sigma_{\perp} \cdot \lambda \sigma \in \Sigma \text {. if } \neg \mathcal{B} \llbracket b \rrbracket \sigma \text { then } \sigma \text { else } f(\mathcal{C} \llbracket c \rrbracket \sigma)\right)
\end{aligned}
$$

But which fixed point of F do we want? We would like to take the "least" fixed point, in the sense that we want $\mathcal{C} \llbracket$ while b do $c \rrbracket$ to give a non- \perp result only when required by the intended semantics. (For example, we want $\mathcal{C} \llbracket$ while true do skip $\rrbracket \sigma=\perp$ for all σ.) The rest of this lecture will expand on this notion of least fixed point, with a look at the underlying theory of partial orders.

Iterating F applied to some "minimal" functio $f_{\perp}=\lambda \sigma$. \perp allows us to create a sequence of successively better approximations for $\mathcal{C} \llbracket$ while b do $c \rrbracket$:

$$
\begin{aligned}
& f_{0}=f_{\perp} \\
& f_{1}=F\left(f_{\perp}\right) \\
& =\lambda \sigma \text {. if } \neg \mathcal{B} \llbracket b \rrbracket \text { then } \sigma \text { else } \perp \\
& f_{2}=F\left(F\left(f_{\perp}\right)\right) \\
& =\lambda \sigma \text {. if } \neg \mathcal{B} \llbracket b \rrbracket \sigma \text { then } \sigma \text { else } \\
& \text { if } \neg \mathcal{B} \llbracket b \rrbracket \mathcal{C} \llbracket c \rrbracket \sigma \text { then } \mathcal{C} \llbracket c \rrbracket \sigma \text { else } \perp \\
& f_{3}=F\left(F\left(F\left(f_{\perp}\right)\right)\right) \\
& =\lambda \sigma \text {. if } \neg \mathcal{B} \llbracket b \rrbracket \sigma \text { then } \sigma \text { else } \\
& \text { if } \neg \mathcal{B} \llbracket b \rrbracket \mathcal{C} \llbracket c \rrbracket \sigma \text { then } \mathcal{C} \llbracket c \rrbracket \sigma \text { else } \\
& \text { if } \neg \mathcal{B} \llbracket b \rrbracket \mathcal{C} \llbracket c \rrbracket \mathcal{C} \llbracket c \rrbracket \sigma \text { then } \mathcal{C} \llbracket c \rrbracket \mathcal{C} \llbracket c \rrbracket \sigma \text { else } \perp \\
& \vdots \\
& f_{n}=F^{n}\left(f_{\perp}\right) \\
& \vdots
\end{aligned}
$$

The "limit" of this sequence will be the denotation of while b do c. To take this "limit", we will consider the approximations as an increasing sequence $f_{0} \leq f_{1} \leq f_{2} \leq \cdots$, and then take the least upper bound. We must first study partial orders to get the needed machinery.

[^0]
2 Partial Orders

A partial order (also known as a partially ordered set or poset) is a pair (S, \sqsubseteq), where

- S is a set of elements.
- \sqsubseteq is a relation on S which is:
i. reflexive: $x \sqsubseteq x$
ii. transitive: $(x \sqsubseteq y \wedge y \sqsubseteq z) \Rightarrow x \sqsubseteq z$
iii. antisymmetric: $(x \sqsubseteq y \wedge y \sqsubseteq x) \Rightarrow x=y$

Examples:

- (\mathbf{Z}, \leq), where \mathbf{Z} is the integers and \leq is the usual ordering.
- $(\mathbf{Z},=)$ (Note that unequal elements are incomparable in this order. Partial orders ordered by the identity relation, $=$, are called discrete.)
- $\left(2^{S}, \subseteq\right)$ (Here, 2^{S} denotes the powerset of S, the set of all subsets of S, often written $\mathcal{P}(S)$, and in Winskel, $\mathcal{P o w}(S)$.
- $\left(2^{S}, \supseteq\right)$
- (S, \sqsupseteq), if we are given that (S, \sqsubseteq) is a partial order.
- (ω, \mid), where $\omega=\{0,1,2, \ldots\}$ and $a \mid b \Leftrightarrow(a$ divides $b) \Leftrightarrow(b=k a$ for some $k \in \omega)$. Note that for any $n \in \omega$, we have $n \mid 0$; we call 0 an upper bound for ω (but only in this ordering, of course!).

Non-examples:

- $(\mathbf{Z},<)$ is not a partial order, because $<$ is not reflexive.
- (Z, $\sqsubseteq)$, where $m \sqsubseteq n \Leftrightarrow|m| \leq|n|$, is not a partial order because \sqsubseteq is not anti-symmetric: $-1 \sqsubseteq 1$ and $1 \sqsubseteq-1$, but $-1 \neq 1$.

The "partial" in partial order comes from the fact that our definition does not require these orders to be total; e.g., in the partial order $\left(2^{\{a, b\}}, \subseteq\right)$, the elements $\{a\}$ and $\{b\}$ are incomparable: neither $\{a\} \subseteq\{b\}$ nor $\{b\} \subseteq\{a\}$ hold.

Hasse diagrams Partial orders can be described pictorially using Hasse diagrams ${ }^{2}$. In a Hasse diagram, each element of the partial order is displayed as a (possibly labeled) point, and lines are drawn between these points, according to these rules:

1. If x and y are elements of the partial order, and $x \sqsubseteq y$, then the point corresponding to x is drawn lower in the diagram than the point corresponding to y.
2. A line is drawn between the points representing two elements x and y iff $x \sqsubseteq y$ and $\neg \exists z$ in the partial order, distinct from x and y, such that $x \sqsubseteq z$ and $z \sqsubseteq y$ (i.e., the ordering relation between x and y is not due to transitivity).
An example of a Hasse diagram for the partial order on the set $2^{\{a, b, c\}}$ using \subseteq as the binary relation is:

[^1]

Least upper bounds Given a partial order (S, \sqsubseteq), and a subset $B \subseteq S, y$ is an upper bound of B iff $\forall x \in B . x \sqsubseteq y$. In addition, y is a least upper bound iff y is an upper bound and $y \sqsubseteq z$ for all upper bounds z of B. We may abbreviate "least upper bound" as LUB or lub. We shall notate the LUB of a subset B as $\bigsqcup B$. We may also make this an infix operator, as in $\bigsqcup\left\{x_{1}, \ldots, x_{m}\right\}=x_{1} \sqcup \ldots \sqcup x_{m}$.

Chains A chain is a pairwise comparable sequence of elements from a partial order (i.e., elements $x_{0}, x_{1}, x_{2} \ldots$ such that $\left.x_{0} \sqsubseteq x_{1} \sqsubseteq x_{2} \sqsubseteq \ldots\right)$. For any finite chain, its LUB is its last element (e.g., $\left.\bigsqcup\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}=x_{n}\right)$. Infinite chains (Winskell: ω-chains) may also have LUBs.

Complete partial orders A complete partial order (cpo or CPO) is a partial order in which every chain has a LUB. Note that the requirement for every chain is trivial for finite chains (and thus finite partial orders) - it is the infinite chains that can cause trouble.

Some examples of cpos:

- $\left(2^{S}, \subseteq\right)$ Here S itself is the LUB for the chain of all elements.
- $(\omega \cup\{\infty\}, \leq)$ Here ∞ is the LUB for any infinite chain: $\forall w \in \omega \cdot w \leq \infty$.
- $([0,1], \leq)$ where $[0,1]$ is the closed continuum, and 1 is a LUB for infinite chains. Note that making the continuum open at the top $-[0,1)$ - would cause this to no longer be a cpo, since there would be no LUB for infinite chains such as $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots$
- $(S,=)$ This is a discrete cpo, just as it is a discrete partial order. The only infinite chains are of the sort $x_{i} \sqsubseteq x_{i} \sqsubseteq x_{i} \ldots$, of which x_{i} is itself a LUB.

Even if (S, \sqsubseteq) is a cpo, (S, \sqsupseteq) is not necessarily a cpo. Consider $((0,1], \leq)$, which is a cpo. Reversing its binary relation yields $((0,1], \geq)$ which is not a cpo, just as $([0,1), \leq)$ above was not.

CPOs can also have a least element, written \perp, such that $\forall x . \perp \sqsubseteq x$. We call a cpo with such an element a pointed cpo. Winskel instead uses cpo with bottom.

3 Least fixed points of functions

Recall that at the end of the last lecture we were attempting to define the least fixed point operator fix over the domain $\left(\Sigma \rightarrow \Sigma_{\perp}\right)$ so that we could determine calculate fixed points of $F:\left(\Sigma \rightarrow \Sigma_{\perp}\right) \rightarrow\left(\Sigma \rightarrow \Sigma_{\perp}\right)$. It was unclear, however, what the "least" fixed point of this domain would be - how is one function from states to states "less" than another? We've now developed the theory to answer that question.

We define the ordering of states by information content: $\sigma \sqsubseteq \sigma^{\prime}$ iff σ gives less (or at most as much) information than σ^{\prime}. Non-termination is defined to provide less information than any other state: $\forall \sigma \in \Sigma$. \sqsubseteq σ. In addition, we have that $\sigma \sqsubseteq \sigma$. No other pairs of states are defined to be comparable. The lifted set of possible states Σ_{\perp} can now be characterized as a flat cpo (a lifted discrete cpo):

- Its elements are elements of $\Sigma \cup\{\perp\}$.
- The ordering relation \sqsubseteq satisfies the reflexive, transitive, and anti-symmetric properties.
- There are three types of infinite chains, each with a LUB:

1. $\perp \sqsubseteq \perp \sqsubseteq \ldots, \mathrm{LUB}=\perp$
2. $\sigma \sqsubseteq \sigma \sqsubseteq \ldots, \mathrm{LUB}=\sigma$
3. $\perp \sqsubseteq \perp \sqsubseteq \ldots \sqsubseteq \sigma \sqsubseteq \sigma \sqsubseteq \ldots, \mathrm{LUB}=\sigma$

4 Functions

We are now ready to define an ordering relation on functions. Functions will be ordered using a pointwise ordering on their results. Given a cpo E, a domain $D, f \in D \rightarrow E$, and $g \in D \rightarrow E$:

$$
f \sqsubseteq_{D \rightarrow E} g \stackrel{\text { def }}{\Longleftrightarrow} \forall x \in D . f(x) \subseteq_{E} g(x)
$$

Note that we are defining a new partial order over $D \rightarrow E$, and that this cpo is pointed if E is pointed, since $\perp_{D \rightarrow E}=\lambda x \in D . \perp_{E}$.

As an example, consider two functions $\mathbf{Z} \rightarrow \mathbf{Z}_{\perp}$:

$$
\begin{aligned}
f & =\lambda x \in \mathbf{Z} . \text { if } x=0 \text { then } \perp \text { else } x \\
g & =\lambda x \in \mathbf{Z} . x
\end{aligned}
$$

We conclude $f \sqsubseteq g$ because $f(x) \sqsubseteq g(x)$ for all x; in particular, $f(0)=\perp \sqsubseteq 1=g(0)$.
If E is a cpo, then the function space $D \rightarrow E$ is also a cpo. We show that given a chain of functions $f_{1} \sqsubseteq f_{2} \sqsubseteq f_{3} \ldots$, the function $\lambda d \in D . \bigsqcup_{n \in \omega} f_{n}(d)$ is a least upper bound for this chain. Consider any function g that is an upper bound for all the f_{n}. In that case, we have:

$$
\begin{aligned}
& \forall n \in \omega \cdot \forall d \in D \cdot f_{n}(d) \sqsubseteq g(d) \\
\Longleftrightarrow & \forall d \in D \cdot \forall n \in \omega \cdot f_{n}(d) \sqsubseteq g(d)
\end{aligned}
$$

Because the f_{n} form a chain, so do the $f_{n}(d)$, and because E is a cpo, it has a least upper bound that is necessarily less than the upper bound $g(d)$:

$$
\begin{aligned}
& \Rightarrow \quad \forall d \in D \cdot\left(\bigsqcup_{n \in \omega} f_{n}(d)\right) \sqsubseteq g(d) \\
& \Longleftrightarrow \quad \forall d \in D\left(\bigsqcup_{n \in \omega} f_{n}\right)(d) \sqsubseteq g(d) \\
& \Longleftrightarrow \quad \bigsqcup_{n \in \omega} f_{n} \sqsubseteq g
\end{aligned}
$$

Therefore, $D \Rightarrow E$ is a cpo under the pointwise ordering.

5 Back to while

It's now time to unify our dual understanding of the denotation of while as both a limit and a fixed point.
We previously defined the denotation of while as both:

$$
\begin{aligned}
\mathcal{C} \llbracket \text { while } b \text { do } c \rrbracket & =\text { fix }(F) \\
& =\text { limit of } F^{n}(\perp)
\end{aligned}
$$

However, we did not know how to define the fix operator over the range of F, nor did we have a definition for the least fixed point of F to take as its limit. CPOs have given us the machinery to handle these definitions now.

We assert that:

$$
\mathcal{C} \llbracket \text { while } b \text { do } c \rrbracket=\bigsqcup_{n \in \omega} F^{n}(\perp)
$$

As an example to give us confidence that this is the correct definition, we see that:

$$
\begin{aligned}
\mathcal{C} \llbracket \text { while true do skip } \rrbracket & =\bigsqcup_{n \in \omega} F^{n}(\perp) \\
& =\perp_{\Sigma \rightarrow \Sigma_{\perp}} \\
& =\lambda \sigma \in \Sigma . \perp
\end{aligned}
$$

As we begin to construct a proof that this denotation is correct, we want to show that this limit, or LUB, is a least fixed point of F. That is, we want to show that

$$
\bigsqcup_{n \in \omega} F^{n}(\perp)
$$

is the least solution to

$$
x=F(x)
$$

This will not be true for arbitrary F ! We need F to be both monotonic and continuous.
Consider a non-monotonic F :

$$
\begin{aligned}
F(x)= & \text { if } x=\perp \text { then } 1 \\
& \text { else if } x=1 \text { then } \perp \\
& \text { else if } x=0 \text { then } 0
\end{aligned}
$$

Although 0 is clearly a fixed point of this $F, F^{n}(\perp)$ is not a chain (the elements cycle between \perp and 1), and so we cannot take the LUB of it. Monotonicity would avoid this problem.

Even monotonicity is not enough. Consider a monotonic but non-continuous F defined over the complete partial order $(\mathbf{R} \cup\{-\infty, \infty\}, \leq)$:

$$
F(x)=\text { if } x<0 \text { then } \tan ^{-1}(x) \text { else } 1
$$

The least fixed point of this F is 1 . However,

$$
\begin{aligned}
& F^{1}(\perp)=\tan ^{-1}(-\infty)=-\frac{\pi}{2} \\
& F^{2}(\perp)=\tan ^{-1}\left(-\frac{\pi}{2}\right)=\ldots
\end{aligned}
$$

For $x<0, F(x)>x$ and $F(x)<0: F^{n}(\perp)$ is a chain that approaches 0 arbitrarily closely: its LUB is 0 . But $F(0)=1$, so the LUB is not a fixed point! The least fixed point of this monotonic function is actually $1=F(1)$. The problem with this function F is that it is not continuous at 0 . In general, we will look for some form of continuity in F for fix to guarantee that the LUB formula gives us a (least) fixed point.

[^0]: ${ }^{1}$ It's important to point out here that our denotations will be defined by structural induction, so that it is okay in this case to assume that $\mathcal{B} \llbracket b \rrbracket$ and $\mathcal{C} \llbracket c \rrbracket$ are defined.

[^1]: ${ }^{2}$ Named after Helmut Hasse, 1898-1979. Hasse published fundamental results in algebraic number theory, including the Hasse (or "local-global") principle. He succeeded Hilbert and Weyl as the chair of the Mathematical Institute at Göttingen.

