
CS611 Lecture 17 Denotational Semantics of IMP October 10, 2001
Scribe: Rohit Ananthakrishna and Manpreet Singh (based on earlier notes from Cristina Patron and Suzanne
Shontz) Lecturer: Andrew Myers

1 Operational Semantics vs. Denotational Semantics

We have described the behaviour of programs in IMP in an operational manner by inductively defining
transition relations to express evaluation and execution. The style of semantics we used is often called
structural operational semantics because of the syntax-directed way in which the rules are presented. It is
also called natural semantics because of the way derivations resemble proofs in natural deduction.

It is fairly easy to to turn the description of the semantics into a recursive-descent interpreter for IMP.
On the other hand, it is hard to compare two programs written in different programming languages. This
suggests we should define the meaning of a program in terms of the underlying semantic domain. We will
have a semantic function (called denotation) which maps pieces of syntax to meanings. This new style of
semantics, called denotational semantics, can be thought of as describing a compiler for IMP that converts
syntax into an extensional representation of that syntax.

2 Semantic Functions

Denotational semantics operates on expressions to produce mathematical objects that are the meaning of
the expression. The mechanism for this is a semantic function, which is usually a mathematical function.

We now give an example.

Example: C[[(λ x x)]] = λx ∈ D.x

Here C is a semantic function that represents the action of a compiler. It takes as input (λ x x), which
is a piece of abstract syntax. (Note: (λ x x) should really be thought of as an abstract syntax tree.) It then
gives meaning to the expression. The brackets [[]] are used to represent this. The meaning of (λ x x) is
given mathematically on the right-hand side of the equation. The meaning is that λ takes x ∈ D and returns
λ(x). This can be thought of in terms of function extensions. In this case, the extension of λ is given by
{(a, a) | a ∈ D}.

Now that we are using λ−expressions to describe mathematical functions, we need to determine how to
parse them.

We start off by giving the convention for a mathematical function of several variables. λxyz.e means that λ
takes the three variables x, y, and z as input and gives e as output. Because we apply λ left-to-right, this is
the same as λxλyλz.e.

The next rule for λ−expressions is that they extend as far to the right as possible.
Thus, λxλyλz.xλw.w = λx(λy(λz.(x(λw.w)))). Be careful with those parentheses!

The final rule is that application is left associative. Thus, xyz = (xy)z = x(y, z).

So, an example of a function taking many variables as inputs is f = λxyz.e = λxλyλz.e.

Typed functions are simply functions and their types. We will usually write the types of the arguments
for mathematical functions unless the name of the argument makes it obvious. Suppose we want to add two
integers x and y. This can be achieved using the following PLUS function:

PLUS = λx ∈ Z.λy ∈ Z.x + y.

1

This function takes x ∈ Z and y ∈ Z (one argument at a time) and yields x + y ∈ Z. Thus, the domain is
Z × Z and the codomain is Z.

Mathematically, this is written as:

PLUS : (Z × Z) → Z; (x, y) 	−→ x + y.

Because (Z × Z) → Z is isomorphic to Z → (Z → Z) and because PLUS operates on one input argument
at a time, this is the same as:

PLUS ∈ Z → (Z → Z).

Note that while application associates to the left, the constructor (→) associates to the right, i.e.,
Z → Z → Z = Z → (Z → Z).

3 Semantic Functions for IMP

Recall now the three kinds of expressions in IMP:

• arithmetic expressions

a ::= n | X | a0 + a1 | a0 − a1 | a0 × a1

• boolean expressions

b ::= a0 ≤ a1 | a0 = a1 | ¬b | b0 ∧ b1 | b0 ∨ b1

• commands

X := a0 | skip | if b0 then c0 else c1 | while b0 do c0

What is the intrinsic meaning of these syntactic categories?

Let us take for example the arithmetic expressions. Our first thought, when we see an expression is to
evaluate it and thus the meaning of an arithmetic expression is an integer. Notice though that this evalua-
tion depends on the particular store we have: given store σ, each expression a denotes a unique integer, so
the meaning of an arithmetic expression is really a function from stores to integers. Hence we can define a
function A which translates the syntax of the arithmetic expressions into their meaning:

A[[a]]σ = n ⇔ 〈a, σ〉 ⇓ n

Similarly, given a particular store σ boolean expressions b denotes a unique truth value. We can define:

B[[b]]σ = t ⇔ 〈b, σ〉 ⇓ t

Since a command c maps one store into another, we define:

C[[c]]σ = σ′ ⇔ 〈c, σ〉 ⇓ σ′

In conclusion, we have the meaning functions A,B, C:

• A ∈ Aexp → (Σ → N)

• B ∈ Bexp → (Σ → T)

• C ∈ Com → (Σ → Σ)

We say that the arithmetic expression a denotes A[[a]] and A[[a]] is a denotation of a. Similarly, B[[b]] is a
denotation of the boolean b and C[[c]] is a denotation of command c. Each denotation is in fact a function:

• A[[a]] : Σ → N

2

• B[[b]] : Σ → T

• C[[c]] : Σ → Σ

This signature for C won’t quite work, however, because of the possibility of non-termination. We’ll see how
to fix it shortly.

The functions A,B, C are defined by structural induction.

3.1 Arithmetic Denotations

Firstly, we define the denotation of arithmetic expressions A ∈ Aexp → (Σ → N) using structural induction:

• A[[n]] = λσ ∈ Σ. n

This means that the denotation of n is a function which associates the natural number n to any state σ.
Similarly,

• A[[X]] = λσ ∈ Σ. σX

• A[[a0 + a1]] = λσ ∈ Σ.A[[a0]]σ + A[[a1]]σ

• A[[a0 − a1]] = λσ ∈ Σ.A[[a0]]σ −A[[a1]]σ

• A[[a0 × a1]] = λσ ∈ Σ.A[[a0]]σ ×A[[a1]]σ

Notice that the signs +,−,× on the left-hand sides represent syntactic signs in IMP, whereas the signs on
the right represent operations on numbers.
We can write the last three definitions as inductive definitions, similar to the inference rules in the operational
semantics: A[[a0]] = f0 A[[a1]] = f1

A[[a0 + a1]] = λσ ∈ Σ. f0σ + f1σ

Instead of using the λ-notation, we can present the definition of the semantics as a relation between states
and numbers:

• A[[n]] = {(σ, n)|σ ∈ Σ}
• A[[X]] = {(σ, σ(X)|σ ∈ Σ}
• A[[a0 + a1]] = {(σ, n0 + n1)|(σ, n0) ∈ A[[a0]] ∧ (σ, n1) ∈ A[[a1]]}
• A[[a0 − a1]] = {(σ, n0 − n1)|(σ, n0) ∈ A[[a0]] ∧ (σ, n1) ∈ A[[a1]]}
• A[[a0 × a1]] = {(σ, n0 × n1)|(σ, n0) ∈ A[[a0]] ∧ (σ, n1) ∈ A[[a1]]}

3.2 Boolean Denotations

As for the arithmetic expressions, the function B : Bexp → (Σ → T) is defined using induction on the
structure of expressions.

We start by applying B to the booleans with no subexpressions as follows:

• B[[true]] = λσ ∈ Σ.true

• B[[false]] = λσ ∈ Σ.false.

After applying both sides of the first function to σ, we get B[[true]]σ = true by a β-reduction. Not only is
this notation more compact, it makes the meaning more clear.

The rest of the rules for boolean denotations are as follows:

3

• B[[a0 = a1]]σ = ifA[[a0]]σ = A[[a1]]σ then true else false

• B[[a0 ≤ a1]]σ = ifA[[a0]]σ ≤ A[[a1]]σ then true else false

• B[[b0 ∧ b1]]σ = if B[[b0]]σ ∧ B[[b1]]σ then true else false

• B[[b0 ∨ b1]]σ = if B[[b0]]σ ∨ B[[b1]]σ then true else false

3.3 Command Denotations

In order to derive the rules for command denotations, we first note that some commands do not terminate.
For example,

(¬∃σ′.〈c, σ〉 ⇓ σ′)

does not terminate.

Instead, commands are partial functions (i.e., they are not total) from states to states (Σ ⇀ Σ). For
example, consider (while x = 0 do skip). Its denotation is given by {(σ, σ) | σ(x) = 0}, which is not
defined for σ(x) �= 0. Thus, the corresponding command is not total.

In order to make denotations total, we add a new state, ⊥, called bottom, to represent non-termination.
Thus, we can say that commands are functions from Σ to Σ⊥, and C ∈ Com → (Σ → Σ⊥),
where Σ⊥ = elements of Σ ∪ {⊥} = (lift of Σ).

Its main advantage over large-step semantics is that we can now specify non-terminating behavior of com-
mands. The function C : Com → Σ → Σ⊥ is also defined using induction on the structure of expressions as
follows:

• C[[skip]]σ = σ

• C[[X := a]]σ = σ[X 	−→ A[[a]]σ]

• C[[c0; c1]]σ =
{ C[[c1]](C[[c0]]σ) (if C[[c0]]σ) �=⊥)

⊥ (otherwise)

• C[[if b then c0 else c1]]σ = if B[[b]]σ then C[[c0]]σ else C[[c1]]σ

Note: It’s ok to use B in the definition of the denotations, since it’s not circular.

if σ =⊥ then ⊥ else . . .

Let us now try to define the denotation for while. In a similar manner with the above definitions, we would
like to write:

C[[while b do c]]σ = if ¬B[[b]]σ then σ else C[[while b do c]](C[[c]]σ)

Unfortunately, this definition is circular: it involves C[[while bdo c]] on both sides. The above is actually not
a definition, but an equation. It is called a recursive equation because the value we wish to know on the left
recurs on the right.
We can also write this equation as an equation about sets:

C[[while b do c]] = {(σ, σ) | ¬ B[[b]]σ}
∪ {(σ,⊥) | B[[b]]σ ∧ C[[c]]σ =⊥}
∪ {(σ, σ′) | B[[b]]σ ∧ C[[c]]σ = σ′′ �=⊥ ∧ C[[while b do c]]σ′′ = σ′}

We can rewrite this as
C[[while b do c]] = {(σ, σ) | ¬B[[b]]σ}

4

∪ {(σ,⊥) | B[[b]]σ ∧ (σ,⊥) ∈ C[[c]]}
∪ {(σ, σ′) | B[[b]]σ ∧ (σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ C[[while b do c]]}

where σ′′ �=⊥.
We must come up with an alternative definition for while. In order to do this, we will construct a

function Γ such that the denotation of while is a fixed point of Γ.
We define Γ(f) (where f is a command denotation) as follows:

Γ = λf ∈ Σ 	→ Σ⊥.{(σ, σ) | ¬B[[b]]σ}
∪ {(σ,⊥) | B[[b]]σ ∧ (σ,⊥) ∈ C[[c]]}
∪ {(σ, σ′) | B[[b]]σ ∧ (Σ, Σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ f}

where σ′′ �=⊥.
Then, the denotation of while is a fixed point of Γ, i.e.,

C[[while b do c]] = Γ(C[[while b do c]]).

Mathematically, this can be written as follows:

C[[while b do c]]σ = fix(λf. if B[[b]]σ then σ else f(C[[c]]σ)).

In the next lecture, we will see how to define the least fixed point operator fix (in the sense that it terminates
as early as possible) for the domain Σ → Σ⊥.

5

