
CS611 Lecture 16 Control: Exceptions and More October 5, 2001
Scribe: Bill McCloskey, Hubert Chao Lecturer: Andrew Myers

Many different kinds of control transfers can be modeled in the uF language using CPS. In this lecture,
various error recovery mechanisms from different languages are desugared into standard uF. The setjmp and
longjmp functions from C, and the cwcc (call with current continuation) function from Scheme are examined,
followed by a more lengthy analysis of Java exceptions.

1 Error Recovery in C

Two functions are available in C for changing the control flow of a program.

• int setjmp(jmp buf a) places the register file in a and returns 0

• void longjmp(jmp buf a, int val) restores the registers from a and returns val from the setjmp call

Since setjmp saves only the registers (and hence the stack pointer), but does not take a snapshot of memory,
the programmer must assure that any call to longjmp is nested inside the setjmp caller. Otherwise, the stack
frame of the setjmp caller will be obliterated, and longjmp will have undefined behavior. Here is an example
of the use of these two functions in a C program.

jmp buf env;

void function1() {
int result;
if ((result = setjmp(env)) == 0) compute();
else report error(result);

}

void compute() {
... call quadratic(a, b, c) in some complex way ...

}

float quadratic(float a, float b, float c) {
if (c == 0) longjmp(env, DIVIDE BY ZERO);

}

The uF language can be augmented with these two functions, and the resulting language can be translated
to a CPS uF. Two new functions will be introduced.

• setjmp e stores the current continuation at location e and returns 0

• longjmp e v applies the continuation stored in location e, passing it v

These functions do not have the same nesting restrictions as their C counterparts. They can be desugared
in a natural fashion using CPS.

D[[setjmp e]]ρk = D[[e]] ρ (check-loc (λlλσ k 〈3, 0〉 update-store(σ l 〈7, k〉)))
D[[longjmp e1 e2]]ρk = D[[e1]] ρ (check-loc (λl D[[e2]] ρ (λvλσ (check-cont(λk′ (k′ v))) (lookup σ l) σ)))

Recall here that 7 is the tag given to continuations and 3 is the tag given to integers. It is assumed that the
return value of setjmp is an integer.

1



2 Other Languages

Other languages have control mechanisms that use continuations. ML has callcc which calls a function,
passing it the current continuation. To jump to a given continuation, throw is used.

Scheme has cwcc, or “call with current continuation.” A function is called. It is passed the current
continuation, which appears as a normal function to the Scheme programmer. As an example,

let result = cwcc (lambda k ... if (bad) then (k err-code) ...)
in if (result = err-code) ...

cwcc can be desugared in uF as well.

D[[cwcc e]]ρk = D[[e]] ρ (check-func (λf (f 〈5, λvλk′ (k v)〉 k)))

3 Java Exceptions

Java exceptions are perhaps more familiar. A value, with a certain type, represents an exception. At some
point in the program, an exception can be thrown when an error occurs. If the throw statement is enclosed
by a catch clause, either lexically or in the current call tree, and the catch clause is labeled with the type of
the exception, then control is passed to the catch clause.

Observe that the scoping rules for exceptions are identical to those for dynamic scope. Dynamic scoping
had the disadvantage that it was difficult to determine what variables were in scope at a certain point in the
program. Exceptions have a similar problem. It’s difficult to know what sort of exceptions a certain library
or function will throw or catch. For this reason, Java requires that all functions declare the exceptions that
they may throw.

The uF language can be augmented with Java-style exceptions, but without the notion of types. Two
new constructs will be added to the language.

• throw s e throws the exception s (represented by a string) and attaches the value e

• try e1 catch (s x) e2 evaluates e1, and then evaluates e2 if the exception s is thrown

Since exceptions resemble dynamic scoping in so many ways, the same approach will be used to desugar
them. A handling environment h will map exception names to continuations. The expression D[[e]]ρkh should
either send the result of e to the continuation k or else invoke an exception handler in h. The desugaring
rules are:

D[[throw s e]]ρkh = D[[e]] ρ (λv (lookup-handler h s) v) h

D[[try e1 catch (s x) e2]]ρkh = D[[e1]] ρ k (extend-handler h s (λv D[[e2]] (extend ρ x v) k h))

Observe that according to the second definition, any exception thrown in a catch clause will be caught by
some outer exception handler, not by the enclosing catch clause. Ordinary translations of abstraction and
application must also be modified. Function values are translated roughly as follows: λx e �→ λxλkλh e′.

D[[λx e]]ρkh = k (λx′λk′λh′ D[[e]] (extend ρ x x′) k′ h′)
D[[e0 e1]]ρkh = D[[e0]] ρ (check-func (λf D[[e1]] ρ (λv f v k h) h)) h

From these definitions, we can see that a function’s handling context is inherited from where it’s called, not
from where it’s declared.

2


