
CS611 Lecture 15 Semantics via CPS translation 10/3/2001
Scribe: Walter Chang, Dennis Yeh Lecturer: Andrew Myers

1 Continuation Passing

Last time we introduced a version of λ calculus that forced us to write code in continuation-passing style
(CPS).

e ::= x | λ x s | λ(x, y) s

s ::= e0 e1 | e0 (e1, e2)

Note that in this language, functions can be applied to 1 or 2 arguments, which we didn’t permit in the
CBV λ calculus. However, we can also write continuation-passing style code even in the ordinary lambda
calculus, which will allow simpler definitional translations of many language features.

To show that we can do CPS translation even into ordinary λ calculus, we define a translation function
CPS[[·]]. The contract that this translation must satisfy is that given an expression e and a CPS term k that
represents a continuation, CPS[[e]]k is a computation that sends the result of e to k. The continuation k has
the form (λv ...), and the idea is that we will invoke it with (k v) where v is the value of e.

Assuming that CPS operates on subterms according to this contract, we can write a new CPS translation,
from the λ calculus into itself:

CPS[[x]]k = k x

CPS[[λx e]]k = k(λx (λk′ CPS[[e]] k′)) (where k′ �∈ FV [[e]])
CPS[[e0 e1]]k = CPS[[e0]](λf CPS[[e1]] (λx (f x) k)) (where f �∈ FV [[e1]])

Note that in the second rule, we translate an abstraction to a term that might appear to violate the
CPS rules, since the body of an abstraction is an abstraction instead of an application. However, these
nested abstractions are simply acting as a two-argument function, because they are only invoked as the f
in the third rule. The function values generated in the second rule are never curried. The translation of an
abstraction has an η redex in it; however, reducing this redex doesn’t really help make our translations any
simpler because of the way that we’ve written our rules with the application to the continuation already
folded in.

For program termination, a special continuation called halt will cause the termination of the program.
One natural way to define halt is as the identity term:

halt
def
= λz z

Recalling our contract for CPS[[·]], this makes sense because the translation using the halt continuation
will result in the value of the translated expression being “sent” to the identity function, and thus popping
out immediately as the result of the whole computation:

e �−→∗ v ⇒ (CPS[[e]]halt �−→∗ ((λz z) V [[v]]) �−→∗ V [[v]])

where V [[v]] is the CPS value translation that is implicit in the CPS translation above:1

CPS[[v]]k = k V [[v]]
V [[x]] = x

V [[λx e]] = λx (λk′ CPS[[e]]k′) (where k′ �∈ FV [[e]])

1Actually, the CPS expression doesn’t necessarily step to exactly V [[v]]; in general it steps to a term that is equivalent and can
be determined to be so through a set of equational rules. This is the same situation that arose in our CBN→CBV translation.

1

CPS makes control transfer explicit—continuations are explicitly represented in the language as first-class
values (functions) that serve as control contexts. CPS is really a low-level language; we can think of the
function invocations as being the same thing as indirect jumps in assembly: they don’t need to return because
there is never anything to return to. This corresponds exactly to the fact that in the operational semantics
for CPS (seen last time), we don’t need evaluation contexts. Because CPS is low-level, the intermediate
languages used in modern compilers are often CPS, especially compilers for functional languages 2. Language
semantics written in CPS are sometimes called continuation semantics or standard semantics (as opposed
to the direct semantics we have been using so far).

2 uF → uF with error checking

Let’s now see how we can map uF to uF with error checking, but using a CPS translation. We’ll also
explicitly keep track of the naming environment ρ. Our translation function D[[e]]ρk sends e in environment
ρ to continuation k.

First, we tag values to make it possible to distinguish different types of values:

V [[error]] = 〈0, #u〉
V [[#u]] = 〈1, #u〉
V [[#t]] = 〈2, #t〉
V [[#f]] = 〈2, #f〉
V [[n]] = 〈3, n〉

V [[〈v1, v2〉]] = 〈4, 〈V [[v1]], V [[v2]]〉〉
V [[λx e]] = 〈5, V [[λx e]]〉

We also define various type-checking abstractions. These are functions that given a continuation, will
produce a continuation that filters the values passed to it. Values of the appropriate type will be passed
through to the underlying continuation; other values will cause an immediate halt with error. For example,
we can use check-fn if we want to check for function values:

check-fn = (λkλp if (left p) == 5 then k (right p) else halt 〈0, #n〉),
Other checking functions, such as check-bool and check-pair, can be defined similarly.

D[[x]]ρk = k (ρ “x”)
D[[#u]]ρk = k 〈1, #u〉
D[[#t]]ρk = k 〈2, #t〉
D[[#f]]ρk = k 〈2, #f〉
D[[n]]ρk = k 〈3, n〉

D[[λx e]]ρk = k 〈5, λx′λk′ D[[e]](extend-env ρ “x” x′) k′〉
D[[e0 e1]]ρk = D[[e0]]ρ(check-fn (λf D[[e1]]ρ(λv f v k)))

D[[if e0 then e1 else e2]] = D[[e0]]ρ(check-bool(λb if b then D[[e1]]ρk else D[[e2]]ρk))
D[[let x = e1 in e2]]ρk = D[[e1]]ρ(λv D[[e2]](extend-env ρ “x” v) k)

D[[〈e1, e2〉]] = D[[e1]]ρ(λv1 D[[e2]]ρ (λv2 k〈4, 〈v1, v2〉〉)))
D[[left e]]ρk = D[[e]]ρ (check-pair (λp k (left p)))

plus rules for right, rec, etc.
2For example, see Compiling with Continuations, by Andrew Appel

2

Recall that (extend-env ρ “x” x′) means the environment ρ is extended with a new variable “x” bound
to x′. Notice that this gives us a more compact translation of uF.

3 uFCBN → uF

With only a couple of small changes, we can turn the translation above into a definitional translation for
a call-by-name version of uF. If evaluation is lazy, variables can’t simply return their values. Instead, a
variable is now bound to a function that expects a continuation and sends a value to it : ρx = (λk . . .).
Argument passing behaves similarly. We only need to change the following rules from above:

D[[x]]ρk = ρ (“x”) k

D[[e0 e1]]ρk = D[[e0]]ρ(check-fn (λf f (λk′ D[[e1]]ρk′) k))
D[[let x = e1 in e2]] = D[[e2]](extend-env ρ “x” (λk′ D[[e1]]ρk′)) k

4 uF! to uF with error checking

Now, the translation D[[e]]ρkσ sends the result of e in environment ρ with store σ to continuation k. The
continuation must also accept a new store σ′, so it has the form k = λvλσ Recall that σ maps locations
to values. Whenever σ is unmodified, as in the first two rules, the translation is identical to uF → uF after
performing η-reduction on σ.

D[[x]]ρkσ = k (ρ “x”) σ

D[[let x = e1 in e2]]ρk = D[[e1]]ρ(λvλσ′ D[[e2]](extend-env ρ “x” v) k)
D[[!e]]ρk = D[[e]]ρ(check-location (λlλσ k (σ(l)) σ))

D[[ref e]]ρk = D[[e]]ρ(λvλσ let l = (malloc σ) in k 〈6, l〉 (update-store σ l v))
D[[e1 ::= e2]]ρk = D[[e1]]ρ(check-location (λl D[[e2]]ρ (λvλσ k 〈1, #u〉 (update-store σ l v))))

Through the magic of η-reduction, we only need to add new rules for the new constructs added in uF!!

3

