
CS611 Lecture 13 Naming and State 9/26/01
Scribe: Sabina Petride Lecturer: Andrew Myers

1 uF!

We extend uF with ML-style reference cells:

e ::= . . . | ref e |!e | e1 := e2 | e1; e2,

where ref e creates a new location containing e, !e derefences expression e, and e1 := e2 updates location e1

with the value of e2. Notice that e1 := e2 is special, since it has side-effects (also called mutations). So e1; e2

evaluates e1 with or without side-effects, and then evaluates e2.
For example, consider the following expression:
let x = ref 1 in
(x := 2; !x)

It creates a new location containing 1, then the location stores the value 2, and dereferencing returns 2.
Using reference cells, we can model more complicated mutable structures, for example mutable arrays:

let x = 〈ref 1, 〈ref 2, ref 0〉〉 in

2 SOS for uF!

Because of possible side-effects, expressions alone are not adequate configurations any more: we need a pair
expression-store: e, σ. If Loc is a countable set of locations, then a store σ is a partial function that maps
locations to values. An evaluation relation is written as e, σ �→ e′, σ′, and a final configuration has the form
v, σ.

Since expressions in uF have no side-effects, the following inference rule shows how to lift uF evaluation
relation to the uF! evaluation relation:

e
uF�→ e′

e, σ �→ e′, σ.

Next we extend the notion of value such that locations l ∈ Loc are considered values, too:

v ::= . . . | l.

We say that a program is well-formed if it does not contain any locations.
Accordingly, we extend the evaluation contexts:

C ::= . . . | ref C |!C | C := e | v := C | C; e.

The evaluation context definition enforces a strict left-to-right evaluation order on the := expression.
This is important in order to retain the Church-Rosser property.

We are now able to write down the SOS:
l �∈ dom(σ)

refv, σ �→ l , σ[l �→ v] !l , σ �→ σ(l), σ

l := v, σ �→ #u, σ[l �→ v] v; e, σ �→ e, σ.

Notice that the first rule has a side condition l �∈ dom(σ), ensuring that the newly allocated location l is
not previously bound in the store σ.

We define the result of the := expression to be the unit value #u to reinforce the idea that this is an
expression evaluated for its side-effect.

1

3 Translation to uF

Given an expression e in uF!, an environment ρ and a state σ, we define D[[e]]ρσ to be the uF term that
evaluates e in ρ and σ to some value v and returns the pair 〈v, σ′〉, where σ′ is the store after executing e.
We will assume that the environment ρ and store σ are uF terms; initially, the environment is some ρ0 and
the state is σ0, since it doesn’t matter what they are until we want to check errors.

Before defining the translation, we introduce three functions we’ll make use of:

• malloc σ = l : returns the location l not allocated in σ

• lookup σ l = σ(l): returns the value stored at location l in state σ

• update σ l v = σ[l �→ v]: the state is updated such that value v is stored at the location l.

There are many possible implementations of these operations; we require only that they satisfy the
following specification (the operation allocated is needed to write the specification and to implement an
error-checking version of the semantics):

lookup(update(s l v) l) = v

lookup(update(s l v) l′) = lookup(s l′), where l �= l′

allocated(malloc(σ) σ) = false

allocated(l update(σ l v)) = true

allocated(l σ0) = false

update(update(σ l v) l′ v′) = update(update(σ l′ v′) l v), where l �= l′

update(update(σ l v) l v′) = update(σ l v′).

We now give the translation:

(1) D[[n]]ρσ = 〈n, σ〉
(2) D[[x]]ρσ = 〈ρ“x“, σ〉
(3) D[[if e0 then e1 else e2]]ρσ =

= let p0 = D[[e0]]ρσ in
let b = left p0 in

let σ′ = right p0 in
if b then D[[e1]]ρσ′ else D[[e2]]ρσ′

(4)D[[e1; e2]]ρσ = let p1 = D[[e1]]ρσ in
let σ′ = right p1 in
D[[e2]]ρσ′

(5)D[[ref e]]ρσ = let p0 = D[[e]]ρσ in
let v = left p0 in

let σ′ = right p0 in
let l = malloc σ′ in
〈l, update store σ′l v〉

(6)D[[!e]]ρσ = let p0 = D[[e]]ρσ in
let v = left p0 in

let σ′ = right p0 in
〈lookup σ′ v, σ′〉

(7)D[[e1 := e2]]ρσ = let p1 = D[[e1]]ρσ in
let l = left p1 in

σ′ = right p1 in

2

let p2 = D[[e2]]ρσ′ in
let v = left p2 in

let σ′′ = right p2 in
〈#u, update store σ′′ l v〉

Some explanations are need. For example (1) should evaluate n in ρ and σ, which of course is n, and
return the pair 〈n, σ〉; much in the same way, in (2) we should evaluate variable x in ρ and σ, which is ρ“x“,
and return it in pair with σ. The rest of the rules are recurrent: each time we take the translation of an
expression in ρ and σ and get a pair from which we extract the actual value and the new state and then
perform translations in the same environment ρ, but in the new state. Since the environment is not changed,
these translation rules show the difference between environments and states.

We said that environments and states are treated as uF terms; to give an example, rule (1) may be
rewritten as D[[n]] = (λ ρ (λ σ 〈n, σ〉)).

Not all the times we are interested in the actual value an expression evaluates to in ρ and σ; for example
in rule (4) we only need to translate e1 and then make explicit the new state, required for the translation
of e2.

We must also pay attention to all the possible side-effects: in rule (5) e may have side effects, such that
we do not actually create a new location and assign a value to it in the state σ where e is evaluated, but in
the state σ′ resulted from the evaluation.

The malloc function should not be mistaken for the similar function in C, since it just returns a location
not allocated in the current state, and no updates are done; successive calls to malloc return the same
location.

Thinking about these rules, it becomes apparent that at any given point exactly one state is needed. So it
is possible to have a single state, and having only one state at each time would avoid the problem of creating
a large number of states. However, there are language features like transactions that require duplication of
the state, semantically at least.

4 Mutable Variables

Suppose now that we want all variables to be mutable. We extend the uF expressions to

e ::= . . . | x := e | e1; e2.

We can desugar this extended uF to uF! and let the translation of such an expression e to be M[[e]]
given by the following rules:

(1)M[[x]] =!x

(2)M[[x := e]] = x := M[[e]]

(3)M[[let x = e1 in e2]] = let x = ref M[[e1]] in M[[e2]]

(4)M[[λx e]] = λx M[[e]] = λx′ let x = ref x′ in M[[e]]

(5)M[[e0 e1]] = M[[e0]] ref M[[e1]]).

Note: We have to make sure that all variables are assignable.

3

