
CS611 Lecture 12 uF Semantics, Error Checking and Scope 9/26/2001
Scribe: Manpreet Singh (manpreet@cs)

Rohit Ananthakrishna (rohit@cs) Lecturer: Andrew Myers

The language uF presented in class is a call-by-value, left-to-right eager, untyped functional language. It
is an extension of the CBV λ-calculus introduced in the previous lecture.

1. Syntax of uF: An expression is represented by the character e. A program is an expression containing
no free variables. Suppose n denotes an integer literal, x denotes a variable name, and ei denotes an
expression. Expressions are then described by the following BNF grammar

b ::= n | #t | #f | #u | s

e ::= b | x | e1 ⊕ e2 | if e0 then e1 else e2 | 〈e1, e2〉 | λx e | e1 e2 | let x = e1 in e2 | rec y(λx e)

v ::= b | λx e | 〈v1, v2〉

#u denotes a unit, #t and #f denote the booleans true and false respectively, s represents the strings.
#u is used when we want to return a dummy value. (This will become clear when we look at error
checking in uF.)

2. SOS to extend CBV semantics with rec: Note that we have added recursive functions to the
CBV semantics. So, we extend the SOS of CBV λ-calculus with rec.

rec y (λx e) �−→ λx(e{rec y (λx e)/y})
We are just unrolling the first recursive call in the above semantics. We illustrate the above semantics
with the following factorial example

let fact = rec f λx if x == 0 then 1 else x ∗ f(x − 1) in fact 3

�−→ let fact = λx if x == 0 then 1 else x∗(rec f λx if x == 0 then 1 else x∗f(x−1)) (x−1) in fact 3

�−→ (λx (if x == 0 then 1 else x ∗ (rec f λx if x == 0 then 1 else x ∗ (rec f(x − 1))(x − 1))) 3
�−→β (if 3 == 0 then 1 else 3 ∗ (rec f λx if x == 0 then 1 else x ∗ (rec f(x − 1))(3− 1))

�−→ 3 ∗ (rec f λx if x == 0 then 1 else x ∗ (rec f(x − 1))(2))
...

�−→ 3 ∗ 2 ∗ 1

If we stare at the SOS of rec the right hand side of the inference is the same as (λyλx e)(rec y (λx e)).
That is we have

rec y (λx e) �−→ (λyλx e)(rec y (λx e))

Therefore (rec y (λx e)) is a fixed point of (λyλx e). This gives us a clue to how we can translate “rec”
into the simple CBV λ calculus. Equivalently,

[[rec y λx e]] = FIXCBV (λyλx [[e]])

1

3. Error Checking in uF

Our previous translation-based semantics for uF didn’t deal with stuck configurations in a completely
satisfactory way. Once the operations (e.g., left) had been translated into lambda calculus, their
behavior in situations that the operational semantics would consider to be stuck is to keep on computing
but generating gibberish. For example, if we evaluated the program left 0, we would get the identity
function, which makes no sense.

We can perform a translation that models run-time error checking. This means that the translated
program must check if operators have been passed with values of the right type. So we tag each of the
different possible values permitted in uF and check if an operand has operands having the desired tag
values. This tagging corresponds fairly closely to what is done in real untyped languages like Scheme.

Each value is now semantically equivalent to a pair where the first value is the tag value and the second
operand the actual value. Here is how we translate values:

[[#u]] = 〈1,#u〉

[[#t]] = 〈2,#t〉
[[#f]] = 〈2,#f〉
[[n]] = 〈3, n〉

[[〈v1, v2〉]] = 〈4, 〈[[v1]], [[v2]]〉〉
[[λx e]] = 〈5, λx [[e]]〉

To the above we add 〈0,#u〉 which is the tag for error. This is returned when a run-time error occurs.
The value #u in this pair is chosen arbitrarily.

We illustrate the above semantics by looking at two examples.

(i) Error checking in addition : The values to “+” must have a tag value of 3 otherwise it is an
error.

[[e1 + e2]] = let p1 = [[e1]] in
let p2 = [[e2]] in
let t1 = left p1 in
let t2 = left p2 in
if t1 = 3 ∧ t2 = 3 then 〈3, right p1+ right p2〉 else 〈0,#u〉

(ii) Error checking in function application : If we have a function application (e1 e2), we have to
ensure that e1 is indeed a function.

[[e1 e2]] = let p1 = [[e1]] inlet p2 = [[e2]] in
let t1 = left p1 in
if t1 = 5 then (right p1) p2 else 〈0,#u〉

What is our notion of correctness for this translation? In addition to the earlier notions of correctness,
we add the following: if an evaluation would have gotten stuck in the operational semantics, the
translated program should evaluate to 〈0,#u〉. If S is a representative stuck expression,

e �−→∗ S ⇒ [[e]] �−→∗ 〈0,#u〉

where

2

S ::= #u v | #t v | #f v | n v | 〈v1, v2〉 v

| if #u then e1 else e2 | . . .

| #u ⊕#u | . . .

| left #u | right #u | . . .

4. Scope Rules: We have been looking at languages with block-structured static scope, in which
identifiers are bound to variables based on the static (lexical) structure of the program. With static
scope, the binding of a variable is determined by the point in the program at which the identifier
occurs. The IMP language that we saw in this course has block-structured static scope. Because our
translational semantics makes environments into explicit first-class entities, we can describe alternate
scoping mechanisms quite easily. With dynamic scope, the alternative, an identifier is bound to the
variable existing at the point where the function is called, not where the function expression is evaluated.
Thus, the meaning of an identifier is determined by the state of the executing program.

The following example evaluates differently in the two approaches:

let delta = 2 in
let bump = λx (x + delta) in
let delta = 1 in
bump 2

With static scope, the identifier delta in the definition of the function bump is bound to the outer
variable delta. The program returns the value 4. With dynamic scope, delta is bound to the variable
delta that is in the scope at the point where the function is called. The program returns the value 3.

5. Semantics to capture the scope rules: The store that we saw in IMP maps locations to
their values. An environment is a map from strings to other things. We will explicitly represent the
environments as uF term ρ that maps variable names (as strings) to their values. That is ρ(“x”)
returns the value of x in ρ.

1. Static scope:
The denotational semantics for static scope are

D[[x]] = λρ ρ(“x”)

Applying both sides to an arbitrary ρ, we get D[[x]]ρ = ρ(“x”)

D[[b]] = λρ b

D[[if e0 then e1 else e2]] = λρ if D[[e0]]ρ then D[[e1]]ρ else D[[e2]]ρ

Semantics of function declaration and let are more complicated. In order to define this we use a
new function extend.

extend ≡ λρλxλv(λz if x = z then v else ρ(z))

Intuitively, extend takes in an environment ρ, variable x and value v and assigns v to x and returns
a new environment in which this change has been reflected.
Using this,

D[[λx e]]ρ = λy D[[e]](extend ρ “x” y)

D[[let x = e1 in e2]]ρ = (let y = D[[e1]]ρ in (D[[e2]](extend ρ “x” y)))

3

D[[e1 e2]]ρ = (D[[e1]]ρ)(D[[e2]]ρ)

The key observation here is that any free variables in the function body e obtain their meaning
in the environment ρ that exists at the point where the function expression itself is evaluated.
Now, we apply these rules to an example and show how it evaluates under static scope.

e ≡ (let delta = 2 in let bump = λx (x + delta) in let delta = 1 in bump 2)
e1 ≡ (let bump = λx (x + delta) in let delta = 1 in bump 2)
e2 ≡ (let delta = 1 in bump 2)
e3 ≡ (bump 2)
e4 ≡ (λx (x + delta))
e5 ≡ λw (D [[z + delta]] (extend ρ1 “z” w)) (1)
ρ1 ≡ extend ρ “delta” 2
ρ2 ≡ extend ρ1 “bump” e5

ρ3 ≡ extend ρ2 “delta” 1

D [[e]] ρ �−→ (let y = (D[[2]]ρ) in (D [[e1]] (extend ρ “delta” y)))
�−→ (let y = 2 in (D [[e1]] (extend ρ “delta” y)))
�−→ (D [[e1]] ρ1)
�−→ (let y = (D[[e4]]ρ1) in (D [[e2]] (extend ρ1 “bump” y))
�−→ (let y = e5 in (D [[e2]] (extend ρ1 “bump” y))
�−→ (D [[e2]] ρ2)
�−→ (let y = (D[[1]]ρ2) in (D [[e3]] (extend ρ2 “delta” y)))
�−→ (let y = 1) in (D [[e3]] (extend ρ2 “delta” y)))
�−→ (D [[e3]] ρ3)
�−→ (D [[bump]] ρ3) (D [[2]] ρ3)
�−→ (D [[bump]] ρ3) 2
�−→ ρ3(“bump”) 2
�−→ e5 2
�−→ (λw (D [[z + delta]] (extend ρ1 “z” w)) 2)
�−→ (D [[z + delta]] (extend ρ1 “z” 2))
�−→ 4

2. Dynamic Scope: To make dynamic scope work, functions need to know the environment at the
point where they are applied. When a function is invoked, a dynamic environment ρdyn must be
supplied so that any free variables in the function body can be interpreted. This is captured by
the following translation:

D[[λx e]]ρlex = λxλρdyn D[[e]]ρdyn

So, we discard the environment of static scope ρlex, take in the current run-time environment
ρdyn and then use the same emantics as static scope, under the new environment ρdyn.
The semantics for function application is as follows:

D[[e1 e2]]ρ = (D[[e1]]ρ) (D[[e2]]ρ) ρ

The idea behind this is that we first find D[[e1]] under the current environment ρ to obtain, say,
e′1. Next we find D[[e2]] under ρ to get e′2. Note that we expect e′1 to be a function that takes

4

a binding and a dynamic environment ρdyn as input and returns the result. Since (e1 e2) is a
function application, we must also pass the current environment, which would take the place of
ρdyn in the body of e′1. Also, we expect e′2 to be a binding. Hence, we apply e′1 to e′2 and ρ.
Now we see how the expression e defined on previous page translates in dynamic scope.

e ≡ (let delta = 2 in let bump = λx (x + delta) in let delta = 1 in bump 2)
e1 ≡ (let bump = λx (x + delta) in let delta = 1 in bump 2)
e2 ≡ (let delta = 1 in bump 2)
e3 ≡ (bump 2)
e4 ≡ (λx (x + delta))
e6 ≡ λw λρdyn (D [[w + delta]] ρdyn)
ρ1 ≡ extend ρ “delta” 2
ρ4 ≡ extend ρ1 “bump” e6

ρ5 ≡ extend ρ4 “delta” 1

D[[e]] ρ �−→ (let y = (D[[2]]ρ) in (D [[e1]] (extend ρ “delta” y)))
�−→ (let y = 2 in (D [[e1]] (extend ρ “delta” y)))
�−→ (D [[e1]] ρ1)
�−→ (let y = (D[[e4]]ρ1) in (D [[e2]] (extend ρ1 “bump” y))
�−→ (let y = e6 in (D [[e2]] (extend ρ1 “bump” y))
�−→ (D [[e2]] ρ4)
�−→ (let y = (D[[1]]ρ4) in (D [[e3]] (extend ρ4 “delta” y)))
�−→ (let y = 1) in (D [[e3]] (extend ρ4 “delta” y)))
�−→ (D [[e3]] ρ5)
�−→ (D [[bump]] ρ5) (D [[2]] ρ5) ρ5

�−→ (D [[bump]] ρ5) 2 ρ5

�−→ ρ5(“bump”) 2 ρ5

�−→ e6 2 ρ5

�−→ D [[2 + delta]] ρ5

�−→ 3

6. Dynamic Scope vs Static Scope:
Dynamic scoping was present in most early versions of List and lives on in Perl and Python. One
may wonder why early language implementors might have chosen dynamic scope. One reason is the
simplicity of implementing functions. The denotational semantics of a function expression state that the
lexical environment ρlex is ignored in the evaluation of a function definition. Thus, with dynamic scope,
the representation of a function value does not need to contain any information about environments.
Dynamic scoping is also useful because it allows additional arguments to be passed implicitly to a
function by changing its free variables. This makes it more versatile than static scope. However, these
hidden arguments are problematic because they violate modularity. Given a body of library code, one
has no way to know when one is accidentally overriding one of these hidden parameters to the library.
Also, static scoping runs faster than dynamic scoping. This is so because in static scoping, the memory
location at which each variable is stored can have a fixed offset. On the other hand, in dynamic scope,
the representation of a function value does not contain any information about environments.

5

