CS611 Lecture 11 Denotational Semantics
Scribe: Alexandru Niculescu-Mizil and Hubert Chao

9/24/01

Lecturer: Andrew Myers

1 Review of CBN and CBYV Semantics

e == x| Aze | e e

v = Azxe

Call By Name Semantics:

Cl\ z eg) er] — Cleg {e1/x}]
C == [.]] Ce

Call By Value Semantics:

ClAze)v] — Cle{v/z}]
C == [.]| Ce|vC

2 CBV Translation and Notes

Call By Name to Call By Value Translation For compactness we omit the name of the translation and just

treat [.] as a semantic function itself

[«] = 2l=2(yy)
Az €]
[eo eal = [eo] (A 2 [ea)

—
>
8
]

=

Il

Expresing semantics through translations is a style of semantics known as denotational semantics, al-
though the target language is usualy mathematical functions rather than A -calculus terms. We’ll see true

denotational semantics later in the course.

3 Soundness and Adequacy in CBV semantics

Soundness : e —" v = F[e] =" v AV =~ [v]

Adequacy : ' e—"v A v~ [v] < [e] =* 0

Basic idea of soundness is saying that the operational semantics doesn’t break the meaning (with respect

to the translation) of the program as it executes.
Proof of soundness

We will show that if e — €’ in CBN then [e] ~ [€]
We will prove this by induction on the form of Cy.

For Cn=[] we have Cn[(A = eo) el] — Cnleo{e1/z}] or equivalently (A z eg) e1r — ep{e1/z}. So we
have to show that [eg]{\ z [e1]/z} = [eo{e1/x}].

We will show this by structural induction on eg.

If eg = x then we have:

[eolfA 2 [eal/z} ~ (x D{X z [e1] /2} = A 2 [er] T = [er] = [2{er/2}] = [eo{er/x}]
If eg = y with y # = then we have:
[eo{A 2 [ea]/z} = (y DA 2 [ed]/2} =y I =~ [yl = [y{er/z}] = [eo{er/z}]
If eg = A\ x es we have:
[A z e2{A z [ex] /a} = (A @ [e2]){A 2 [er]/x} = [(A @ e2){e1/a}] = [eofer/x}]
If eg = A\ y e2 we have:
[Ay e2l{A 2z [ea]/a} = (A y [e2]){A 2 [ea] /z}
Given that es is a subexpression of ey we can apply the induction hypothesis obtaining:
Ay ([e2{A z [eal/z}) = Ay [eafer/x}] = [(A y e2){er/}] = [eofer/}]
If eg = e e3 then we have:
[e2 es]{A 2 [ea]/z} ~ ([e2] A 2 [es]){A z [ex] /2} = ([e2]{A 2 [ex]/z})((A 2 [esD{A 2 [ea]/2}) =
~ ([e2]{A 2 [eal/z}) (X 2 ([es[{A z [ex] /2}))
Given that e and e are subexpressions of ey we can apply the induction hypothesis obtaining;:
([ezl() = eal 2D\ 2 ([eal{A = [ex]/a}) ~ [eafer/a} O = (Teater/o}D) = Feafer /) eafer/a}] =
~ [(e2 es){er/x}] = [eo{er/x}]
This concludes our proof that [eg]{) z [e1]/z} =~ [eo{e1/x}].
Now, for Cny = Cly €’ we have C\[(A = eg) el]e” — Clyleo{e1/x}]e”. Because C; is a subexpression of

Cn we have [Ci[(A = eg) el]] = [Chyleo{er/z}]] according to the induction hypothesis. So we have (with
induction on structure of Cy,now):

[CNIA 2 eo) eale”] = [CN[(A 2 eo)er][(A 2 [e"]) = [Crleofer/}HI(A 2 [e"]) = [Cyleofer/w}]e”]

4 Extending the CBV Lambda Calculus

4.1 Adding If's and booleans

e = | #t | #f | ifep thene; else ey
v ou= | #t | #
SOS:
C == .. | ifCthene; elsee;y
e—e

Cle] — C[e¢'] if#tthene; elsee; — e; if#fthene; elsees — e

] = Azdy@D)
[#f] Az Xy (y 1)
[ifeo thene; elsees] = [eo] (A z [e1]) (A z [ez2])

Note that this translation has no error checking for the case where #t or #f are not first argument to an
if expression.

4.2 Adding Let's

e

SOS:

C

let x =vine — e{v/z}

o | let x =e1 in e

. | let z=Cin eq

[let © = ey in e3] = (A x [e2]) [e1]

4.3 Adding Pairs

SOS:

(e1,e2) | left e | right e

<Ul’ 'U2>

.| (Cye) | (v,C) | left C | right C

left (vy,v9) — w1

[{e1, €2)]
[left €]
[right €]

right (vy,v2) — v9

Az Ay X ffay)le] [e2]
[e] Az Xy)
fe] Az Ayy)

