
CS611 Lecture 10 Definitional Translation September 21, 2001
Scribe: Andrew Chung and Alexa Sharp Lecturer: Andrew Myers

1 Evaluation Contexts

In call-by-name (CBN) lambda calculus we had the following evaluation rules:

(λx e0) e1 �→ e0{e1/x}
e0 �→ e′0

(e0 e1) �→ (e′0 e1)

We can restate the operational semantics in a different way using evaluation contexts. A context is
a program with a hole in it. An evaluation context is a context where the hole is a place we can plug
in a reducible expression, or redex. We write C ˆ to mean an evaluation context and C[e] to denote the
context applied to an expression e (which fills the hole in C). We redefine the call-by-name and call-by-value
evaluation rules in terms of these contexts:

For call-by-name:

C ::= [·] | C e1

C[(λ x e0) e1] �→ C[e0{e1/x}]
For call-by-value:

C ::= [·] | C e1 | v C

C[(λx e) v] �→ C[e{v/x}]
where v = λ x e

2 A Translation Function

Another way to understand a language (say, CBN λ-calculus) is to construct a definitional interpreter, an
interpreter for the CBN λ-calculus written in another, better understood language. A related approach is
to define a definitional translation, which translates CBN λ-calculus into another language.

The call-by-value calculus is a good language to translate other languages to, because it is simple and
corresponds fairly well to what is easy to compile. To show this, we will demonstrate how to translate CBN
λ-calculus into CBV λ-calculus by producing a desugaring function D[[e]] = e′, where e is a CBN term and
e′ is a CBV term that simulates e in some sense.

The key problem in translating the lazy CBN calculus to the eager CBN calculus is that we need a way
to “pickle” a (possibly divergent) expression e so that we do not evaluate it right away (eagerly). This is
necessary in our CBN to CBV translation in order to simulate lazy evaluation. We pickle an expression e
by wrapping it into a lambda-term:

e → (λ z e) z 	∈ FV [[e]]

The right-hand term is called a thunk (The past participle of “think”). The argument z is a dummy
variable, so it doesn’t matter what we apply this function to. We’ll apply it to the simplest closed term,
I ≡ λx x.

Now let us inductively define D, our translation function:

D[[x]] = (x I)

1

D[[e0 e1]] = D[[e0]](λ z D[[e1]])

D[[λ x e]] = (λ x D[[e]])

We will check this definition by trying it on the test case FALSE Ω. Recall that FALSE ≡ λxλy y,
Ω ≡ (λx (x x))(λx (x x)). We would (ideally) like to have FALSE Ω �→∗ I, as this is how call-by-name
would evaluate the expression. Note that this same expression diverges in the call-by-value calculus. We
begin with

D[[(λ x (λ y y)) ((λ x (x x)) (λ x (x x)))]]

= D[[(λ x (λ y y))]] (λ z D[[Ω]])

= (λ x(λ y (y I))) (λ z D[[Ω]])

= (λ y (y I))

= D[[λ y y]]

This evaluation satisfies the following commutation diagram, which seems like a reasonable way to capture
the soundness of the translation:

e
CBN∗�−→ v

D ↓ D ↓
D[[e]] CBV ∗�−→ D[[v]]

But we have a problem with this notion of soundness, which is illustrated in the following example.
Consider

(λy (λx y)) (λw w) �→ λx (λw w)

We’d like to have D[[λx (λx y) (λw w)]] �→∗ D[[λxλw w]] = λxλw (w I). However, our definition above results
in the following evaluation:

D[[(λ y (λ x y)) (λ w w)]] = λ y (λ x (y I)) (λ z (λ w (w I))) �→∗ (λ x (λ z (λ w (w I))) I) 	= λxλw (w I)

What has happened is that the two right-hand-sides are not exact translations; instead we have an extra
λ-term and application introduced by the D function. Thus our commutation diagram needs to look more
like this:

e
CBN�−→ e′

↓ ↓
D[[e]] CBV ∗�−→ D[[e′]] ≈ e′′

But the two terms are really equivalent in that if we were allowed to make a β reduction in the middle
of the term, then the two will be exactly the same. What we would like to say is that if e

CBN�−→ e′ ⇒
∃ e′′ . D[[e]] CBV ∗�−→ e′′ ∧ e′′ ≈ D[[e′]]

3 Equivalence Axioms and Rules

We define an equational proof system that allows us to show that two expressions are equivalent. Note that
we might consider expressions to be equivalent extensionally even though the proof system cannot show it;
that’s okay because we only want to be able to show that certain expressions produced by D are equivalent.

e ≈ e (reflexive)
e′ ≈ e
e ≈ e′

(symmetric) e1 ≈ e2 e2 ≈ e3

e1 ≈ e3
(transitive)

e0 ≈ e′0 e1 ≈ e′1
e0 e1 ≈ e′0 e′1

e ≈ e′

λ x e ≈ λ x e′ (λ x e0) e1 ≈ e0{e1/x}

2

These top three rules hold for any equational proof system: they capture the idea that ≈ is an equivalence
relation. The next two rules tell us that substituting equivalent terms results in equivalent terms; a relation
with this property is called a congruence. The final rule says that β-reduction preserves equivalence. For this
translation, we could in place of the β rule define a more restrictive equivalence rule that captures precisely
the way in which terms can fails to be syntactically equal:

z 	∈ FV (e0)
(λz e0)I ≈ e0

With these axioms and rules, we can attempt to prove the soundess property, i.e. e
CBN�−→ e′ ⇒

∃ e′′ . D[[e]] CBV ∗�−→ e′′ ∧ e′′ ≈ D[[e′]]. Equivalently, if we can show that e
CBV�−→ e′ ⇒ D[[e]] ≈ D[[e′]],

then we can prove the soundness property by induction on the number of evaluation steps.

Consider all the steps e �→ e′ you could take with CBN semantics:

C ::= [·] | C e1

C[(λ x e0) e1] �→ C[e0{e1/x}]

We will prove e
CBN�−→ e′ ⇒ D[[e]] ≈ D[[e′]] by induction on the structure of the context CN . Consider

CN [(λ x e0) e1] �→ CN [e0{e1/x}], where CN = [·] or CN = C′
N e, where C′

N is a smaller context than CN (ie,
induction hypothesis).

If CN = [·], then we would like to show that D[[(λ x e0) e1]] ≈ D[[e0{e1/x}]]. Continuing the evaluation,
we have

⇒ D[[(λ x e0)]] (λ z D[[e1]]) ≈ D[[e0{e1/x}]]

⇒ (λ x D[[e0]]) (λ z D [[e1]]) ≈ D[[e0{e1/x}]]
⇒ D[[e0]]{(λ z D[[e1]])/x} ≈ D[[e0{e1/x}]]

This is an example of a Substitution Lemma. The proof (including the CN = C′
N e) will be continued

next class.

3

