
CS611 Lecture 08 Lambda calculus encodings 17th September, 2001
Scribe: Lin Guo, Feng Shao Lecturer: Andrew Myers

This note provides the following:

• Boolean and IF

• Arithmetic and integers

• Data structures (lists, trees, arrays, cons cells(pairs))

• Recursive functions

Lambda calculus terms can become long. For compactness we will use certain names, as well as multiple
arguments, as abbreviation. We will write NAME ≡ e to indicate that NAME is an abbreviation for e. Here
are some definitions for names we will use:

APPLY TO FIVE ≡ (λ f (f 5))
COMPOSE ≡ λ (f g) (λ x (f (g x)))

TWICE ≡ (λ f (λ x (f (f x))))

Here, COMPOSE composes two functions, and TWICE returns a function that calls the given function
twice. For example :

(TWICE INC) 2 �→∗ 4

On the other hand, we can use COMPOSE to define the TWICE:

TWICE ≡ (λf(COMPOSE f f))

1 Boolean

Lambda Calculus is universal. This means that no primitive boolean type or ’if’ statement is needed. We
can form them as follows:

TRUE ≡ (λx(λy x)) ∼ (λ(x y) x)
FALSE ≡ (λx(λy y)) ∼ (λ(x y) y)

IF ≡ λ(btf) (b t f)

So, TRUE is a function which takes two arguments and returns the first one , FALSE returns the second one
and if e0 then e1 else e2 ⇒ IF e0 e1 e2 . Note that call-by-name is important. e1 and e2 are not evaluated
eagerly by IF. So it doesn’t necessarily diverge if e1 or e2 does.

2 Arithmetic

Another data type which we need is natural numbers.We can model the number n as a function that composes
an arbitrary function n times, like n = f �→ fn.This representation is called Church numerals.Here is the
definition:

0 ≡ (λ(f x) x) (= FALSE)
1 ≡ (λ(f x) (f x))

2 ≡ (λ(f x) (f (f x)))
3 ≡ (λ(f x)(f(f(f x))))

n ≡ (λ(f x) (f(· · · (f x) · · ·)))

1

We can now define operations on integers. INC adds one to a number. It’s a function fn �→ fn+1. So
we have

INC ≡ λn (λf (λx (f(n f) x)))
+ ≡ λ(n1 n2) ((n1 INC) n2)

3 Data structure

We can construct pairs and lists. The pair/list operations are:
(CONS x y): construct a list with head x and tail y
(LEFT x y): return first item in list (or first item in pair)
(RIGHT x y): return remainder of list (or second item in pair)

So we have the following equations that any implementation must satisfy:

LEFT(CONS x y) = x

RIGHT(CONS x y) = y

CONS((LEFT p)(RIGHT p)) = p

Here is one way to implement these operations:

CONS ≡ (λ(x y) (λf (f(x y))
︸ ︷︷ ︸

p

)

LEFT ≡ λp(p TRUE)
RIGHT ≡ λp(p FALSE)

If we use these operations in ways that the equations above do not handle, we get garbage. Consider
LEFT 0 and it happens to evaluate to identity.Programming using these encodings is error-prone. This is
a defect of this style .

4 Define a Recursive Functions

Consider a recursive function which computes the factorial of an integer. By intuition, we will describe
FACT as:

FACT = (λn IF (ISZERO n) 1 (× n (FACT (− n 1)))

But this is just a description, not a definition. We need to somehow remove the recursion within the
definition. We will do this by defining a new function of FACT’, which will be passed a function f such that
((f f) n) to compute the factorial of n.

FACT′ ≡ (λf (λn IF (ISZERO n) 1 (× n (f f (− n 1))))

And the actual factorial function we are to define is FACT′ applied to itself.

FACT ≡ (FACT′ FACT′)

Now the function FACT actually works! As an example, let’s see what happens when we evaluate
(FACT n):

FACT n = (FACT′ FACT′ n)
= λn IF (ISZERO n) 1 (×n (FACT′ FACT′ (n − 1)

︸ ︷︷ ︸

FACT(n−1)

)))

2

5 Recursion Removal Tricks

Now, let’s see what we just did to the FACT function to remove recursion. In general,suppose F = e,
where e mentions F , we use a 3-step process to remove the recursion in F :

1. Define a new term F ′ with a parameter f ;

2. Substitute (f f) for all F to get F ′:

- F ′ ≡ (λ f e) {(f f)/F}
3. Replace any external reference to the recursive function F with an application of our new function

applied to itself, i.e. F ≡ F ′ F ′

6 Abstracting with the Fixed Point Operator

Recall our original recursive description of the factorial function:

FACT = (λn IF (ISZERO n) 1 (× n (FACT(− n 1)))

This description’s solution is the factorial function. Note that we can simplify this equation by introducing
a new function, say FACTEQN:

FACTEQN ≡ λ f (λn IF (ISZERO n) 1 (× n (f (− n 1)))

and as a result:
FACT ≡ (FACTEQN FACT)

Thus, FACT is a fixed point of FACTEQN. Suppose we have an operator FIX that found the fixed point of
functions. In other words, for any function f ,

(FIX f) = f(FIX f)

So we can define FIX as:
FIX = (λ f (f (FIX f)))

Now we can apply the removal technique we used above to FIX,

FIX’ ≡ (λ y (λ f (f (y y f))))
FIX ≡ (FIX′ FIX′)

The traditional form of FIX, which requires call-by-name, is the Y combinator:

Y ≡ (λ f ((λ x (f (x x)) (λ x (f (x x))))))

Both of these definitions have the defect that they diverge when used in a CBV language. We can address
this by noting that we only expect (FIX f) to be extensionally equal to f(FIX f):

(FIX f) x = f (FIX f) x

FIX = λ f (λ x (f (FIX f) x))

FIX′ ≡ λ y λ f (λ x (f (y y f) x))

FIX ≡ FIX’ FIX’

The Y combinator can be similarly repaired:

YCBV ≡ λ f ((λ x (λ y (f (x x) y))) (λ x (λ y (f (x x) y))))

3

