This note provides the following:

- Boolean and IF
- Arithmetic and integers
- Data structures (lists, trees, arrays, cons cells(pairs))
- Recursive functions

Lambda calculus terms can become long. For compactness we will use certain names, as well as multiple arguments, as abbreviation. We will write $N A M E \equiv$ e to indicate that $N A M E$ is an abbreviation for e. Here are some definitions for names we will use:

$$
\begin{aligned}
A P P L Y _T O _F I V E & \equiv(\lambda f(f 5)) \\
C O M P O S E & \equiv \lambda(f g)(\lambda x(f(g x))) \\
T W I C E & \equiv(\lambda f(\lambda x(f(f x))))
\end{aligned}
$$

Here, COMPOSE composes two functions, and TWICE returns a function that calls the given function twice. For example :

$$
\left(\text { TWICE INC) } 2 \mapsto^{*} 4\right.
$$

On the other hand, we can use COMPOSE to define the TWICE:

$$
T W I C E \equiv(\lambda f(C O M P O S E ~ f f))
$$

1 Boolean

Lambda Calculus is universal. This means that no primitive boolean type or 'if' statement is needed. We can form them as follows:

$$
\begin{gathered}
\text { TRUE } \equiv(\lambda x(\lambda y x)) \sim(\lambda(x y) x) \\
\text { FALSE } \equiv(\lambda x(\lambda y y)) \sim(\lambda(x y) y) \\
\operatorname{IF} \equiv \lambda(b t f)(b t f)
\end{gathered}
$$

So, TRUE is a function which takes two arguments and returns the first one, FALSE returns the second one and if e_{0} then e_{1} else $e_{2} \Rightarrow I F e_{0} e_{1} e_{2}$. Note that call-by-name is important. e_{1} and e_{2} are not evaluated eagerly by $I F$. So it doesn't necessarily diverge if e_{1} or e_{2} does.

2 Arithmetic

Another data type which we need is natural numbers. We can model the number n as a function that composes an arbitrary function n times, like $\mathrm{n}=f \mapsto f^{n}$. This representation is called Church numerals.Here is the definition:

$$
\begin{gathered}
0 \equiv(\lambda(f x) x) \quad(=\text { FALSE }) \\
1 \equiv(\lambda(f x)(f x)) \\
2 \equiv(\lambda(f x)(f(f x))) \\
3 \equiv(\lambda(f x)(f(f(f x)))) \\
n \equiv(\lambda(f x)(f(\cdots(f x) \cdots)))
\end{gathered}
$$

We can now define operations on integers. INC adds one to a number. It's a function $f^{n} \mapsto f^{n+1}$. So we have

$$
\begin{array}{r}
I N C \equiv \lambda n(\lambda f(\lambda x(f(n f) x))) \\
+\equiv \lambda\left(n_{1} n_{2}\right)\left(\left(n_{1} \text { INC) } n_{2}\right)\right.
\end{array}
$$

3 Data structure

We can construct pairs and lists. The pair/list operations are:
(CONS $x y$): construct a list with head x and tail y
(LEFT x y): return first item in list (or first item in pair)
(RIGHT $x y$): return remainder of list (or second item in pair)
So we have the following equations that any implementation must satisfy:

$$
\begin{aligned}
& \operatorname{LEFT}(\text { CONS } x \text { } y)=x \\
& \operatorname{RIGHT}(\text { CONS } x y)=y \\
& \operatorname{CONS}((\text { LEFT } p)(\text { RIGHT } p))=p
\end{aligned}
$$

Here is one way to implement these operations:

$$
\begin{array}{r}
\text { CONS } \equiv(\lambda(x y)(\underbrace{\lambda f(f(x y))}_{p}) \\
L E F T \equiv \lambda p(p \text { TRUE }) \\
\text { RIGHT } \equiv \lambda p(p \text { FALSE })
\end{array}
$$

If we use these operations in ways that the equations above do not handle, we get garbage. Consider LEFT 0 and it happens to evaluate to identity.Programming using these encodings is error-prone. This is a defect of this style.

4 Define a Recursive Functions

Consider a recursive function which computes the factorial of an integer. By intuition, we will describe $F A C T$ as:

$$
F A C T=(\lambda n \operatorname{IF}(\operatorname{ISZERO} n) 1(\times n(F A C T(-n 1)))
$$

But this is just a description, not a definition. We need to somehow remove the recursion within the definition. We will do this by defining a new function of $F A C T$, which will be passed a function f such that $((f f) n)$ to compute the factorial of n.

$$
\left.F A C T^{\prime} \equiv\left(\lambda f\left(\begin{array}{lll}
\lambda n & I F \\
(\text { ISZERO } & n) & 1(\times n(f f(-n
\end{array}\right)\right)\right)
$$

And the actual factorial function we are to define is $F A C T^{\prime}$ applied to itself.

$$
F A C T \equiv\left(F A C T^{\prime} \quad F A C T^{\prime}\right)
$$

Now the function $F A C T$ actually works! As an example, let's see what happens when we evaluate (FACT n):

$$
\begin{aligned}
F A C T n & =\left(F A C T^{\prime} F A C T^{\prime} n\right) \\
& =\lambda n \operatorname{IF}(\operatorname{ISZERO} n) 1(\times n(\underbrace{F A C T^{\prime} F A C T^{\prime}(n-1)}_{F A C T(n-1)})))
\end{aligned}
$$

5 Recursion Removal Tricks

Now, let's see what we just did to the $F A C T$ function to remove recursion. In general,suppose $F=e$, where e mentions F, we use a 3 -step process to remove the recursion in F :

1. Define a new term F^{\prime} with a parameter f;
2. Substitute $(f f)$ for all F to get F^{\prime} :

$$
-F^{\prime} \equiv(\lambda f e)\{(f f) / F\}
$$

3. Replace any external reference to the recursive function F with an application of our new function applied to itself, i.e. $F \equiv F^{\prime} F^{\prime}$

6 Abstracting with the Fixed Point Operator

Recall our original recursive description of the factorial function:

$$
F A C T=\left(\begin{array}{lll}
\lambda n & I F \\
(\text { ISZERO } & n
\end{array}\right) 1(\times n(F A C T(-n 1)))
$$

This description's solution is the factorial function. Note that we can simplify this equation by introducing a new function, say FACTEQN:

$$
F A C T E Q N \equiv \lambda f(\lambda n \quad I F(\text { ISZERO } n) 1(\times n(f(-n 1)))
$$

and as a result:

$$
F A C T \equiv(F A C T E Q N \quad F A C T)
$$

Thus, $F A C T$ is a fixed point of $F A C T E Q N$. Suppose we have an operator $F I X$ that found the fixed point of functions. In other words, for any function f,

$$
(F I X f)=f(F I X f)
$$

So we can define FIX as:

$$
F I X=(\lambda f(f(F I X \quad f)))
$$

Now we can apply the removal technique we used above to FIX,

$$
\left.\begin{array}{r}
F I X^{\prime} \equiv\left(\begin{array}{rl}
\lambda y\left(\lambda f\left(\begin{array}{ll}
f\left(\begin{array}{ll}
y & y
\end{array}\right)
\end{array}\right)\right)
\end{array}\right) \\
F I X \equiv\left(F I X^{\prime}\right. \\
F I X^{\prime}
\end{array}\right)
$$

The traditional form of FIX, which requires call-by-name, is the Y combinator:

$$
Y \equiv(\lambda f((\lambda x(f(x x))(\lambda x(f(x x))))))
$$

Both of these definitions have the defect that they diverge when used in a CBV language. We can address this by noting that we only expect $(\operatorname{FIX} f)$ to be extensionally equal to $f(F I X f)$:

$$
\begin{gathered}
\left(\begin{array}{ll}
F I X & f
\end{array}\right) x=f\left(\begin{array}{ll}
F I X & f
\end{array}\right) x \\
F I X=\lambda f\left(\lambda x\left(\begin{array}{ll}
f\left(\begin{array}{ll}
F I X & f
\end{array}\right) x
\end{array}\right)\right) \\
F I X^{\prime} \equiv \lambda y \lambda f\left(\lambda x\left(f\left(\begin{array}{ll}
l & y
\end{array}\right) x\right)\right) \\
F I X \equiv F I X^{\prime} F I X^{\prime}
\end{gathered}
$$

The Y combinator can be similarly repaired:

$$
Y_{\mathrm{CBV}} \equiv \lambda f((\lambda x(\lambda y(f(x x) y)))(\lambda x(\lambda y(f(x x) y))))
$$

