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Motivation
We have been using inference rules to define evaluation. For example,
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However, when we do proof trees we use rule instances:
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Note that we don’t bother writing the side condition for rule instances: 2 + 2 = 4. The side condition is
only used to decide that this is a valid rule instance.

We have been interested in finding the set A of all valid evaluations. An evaluation maps a command
and a state onto a new state, so A C Com x X x X. More generally, consider defining an arbitary set A
using inference rules.

The Rule Operator

Suppose we have a rule instance of the form

r1 T2 ... Tp
T

This rule instance means that if the elements x1, xo, ..., 2, are all in A then x is also in A.
Needless to say, if we have an axiom of the form

then z € A, as there are no premises to satisfy.
For a given set of axioms and inference rules, we define the rule operator R : P(Com x ¥ x ) —
P(Com x X X X) as follows:

R(S) = {m‘y is a rule instance and x1,...,x, € S}
T

The operator R “encapsulates” everything we know about the axioms and inference rules.

Properties of the Rule Operator
The rule operator R satisfies the following properties -
e R(AUB) 2 R(A)UR(B)
e R(A(B) C R(A)NR(B)
e AC B= R(A) C R(B) (Operator R is monotonic)

R(D) gives all instances of the axioms. R?(()) gives all evaluations that can be deduced in one step, i.e.
that have a proof tree of depth 1.



What properties do we need for A?

o Consistent — every element in A should be derivable from a rule, i.e. A C R(A)

o Closed — there are no new elements to derive, i.e. A D R(A)

These properties imply A = R(A). A is therefore a fixed point of R.

Definition: For some function f : D — D and some z € D, if f(z) = x then z is said to be a fized point
of f.

One function could have multiple fixed points, and indeed our rule operator R does in general have
multiple fixed points.

Defining A

For inductively defined sets, we want A to contain all and only the evaluations with finite proof trees, i.e.
we would like

A RO)UR*(D)U...

- nEan (@)
Claim: A=/
Proof:
(1) A2 R(A)
Let x € R(A). We need to show that xz € A.
For this we will first show that Vn R™()) C R"*1(()
For n = 0 this trivially holds for § C R(().
Now assume the inductive hypothesis,

R, (D) is a fixed point of R.

new

R™(0) € R™1(0)
Using the monotonicity property of R we have
RnJrl(@) C Rn+2 (@)

Hence, by induction, Vn R™(0) C Rn+1(@) .
Now, z € R(A), so there is some rule instance

r1 T2 ... Tp
T
with z1,29,...,2, € A.
Since all the premises x1,x2,...,z, € A have finite proof trees, there must be some finite m such that
x1,%2,..., 2T, € R™(()), which implies x € R™*1())) C A. (Note: if there were an infinite number of premises

in the rule instance, then we would not be able to find a finite m. However, as all our inference rules have a

finite number of premises, we are safe!)
So, z € R(A) = z € A and thus A D R(A).

(2) A C R(A)
Let # € A. z has a finite proof tree, so there exists some finite m such that z € R™(0). So 1, z2,...,T, €
R™1((). Therefore z € R(R™1(0)).
Since R™~1(0) C A, from monotonicity, R(R™~1(}))) C R(A). Therefore z € R(A).
So A C R(A).

From (1) and (2) it follows that A = R(A) and so A is a fixed point.

Claim: A is the least closed set of R.
Proof: Suppose B is closed under R, that is B O R(B). We need to show that A C B.
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So R(0) < R(B)
R(0) C R(B)
R"()) C RMB)

= A=U,eo R"0) € U, R"(B)=2B

So A is the least closed set of R.
Since all fixed points of R must be closed, A is also the least fixed point of R:

VBC Comx X xX%, R(B)=B=ACB

Definition: fix: (D — D) — D is the least fixed point operator. It takes some relationship defined on
D — D, and returns the least fixed point that the relationship implies. This is relative to some ordering on
D: in this case, C.

We have just shown that fix(R) = A.

Functions

A function f: A — B can be regarded as a set
{<a0, b0>, <a0, b0>, .. } = {ao — bo, a1 — by,.. } a; € A,bz €B

This set is known as the extension of f. When f is regarded in this way f C A x B.

Alternatively, we could write f € A — B C P(A x B) where P(X) is the power set of X — the set of
all possible subsets of X. Note that we can also write B4 for A — B.

By convention A — B means total functions from A to B, and A — B means partial functions from A
to B. In general we will only be dealing with total functions.

Total functions must have certain properties:

1. No a shows up more than once in the extension of f. That is, if f(a) = by and f(a) = bz then by = bs.
2. Every a shows up at least once in the extension of f.

We can write functions like inference rules provided the following conditions are met:

1. Every a is covered by exactly 1 rule.

2. There is a well-founded relation on A that the rules respect.

For example, consider the successor function s : N — N:

@=1{2 ifa=1
S\ = s(n)+1 ifa=n+1

Each natural number is covered by exactly one rule for s: 1 is covered by the first rule, and all numbers
greater than 1 are covered by the second. Since s(a) is defined in terms of s(n), we need some well-founded
ordering < on the natural numbers such that n < a to ensure no infinite descending chains occur. The
natural ordering on natural numbers satisifes this.

The axiom and inference rule for s are:

(where a = 1)

s(a) =2



stn) =y (where a = n+1, x=y+1)
T

s(a) =

An instance of the inference rule is
s(37) = 38

$(38) = 39



