Motivation

We have been using inference rules to define evaluation. For example,

$$
\frac{\left\langle a_{0}, \sigma\right\rangle \Downarrow n_{0} \quad\left\langle a_{1}, \sigma\right\rangle \Downarrow n_{1}}{\left\langle a_{0}+a_{1}, \sigma\right\rangle \Downarrow n}\left(n_{0}+n_{1}=n\right)
$$

However, when we do proof trees we use rule instances:

$$
\frac{\langle 2, \sigma\rangle \Downarrow 2 \quad\langle x, \sigma\rangle \Downarrow 2}{\langle 2+x, \sigma\rangle \Downarrow 4}
$$

Note that we don't bother writing the side condition for rule instances: $2+2=4$. The side condition is only used to decide that this is a valid rule instance.

We have been interested in finding the set A of all valid evaluations. An evaluation maps a command and a state onto a new state, so $A \subseteq \mathbf{C o m} \times \Sigma \times \Sigma$. More generally, consider defining an arbitary set A using inference rules.

The Rule Operator

Suppose we have a rule instance of the form

\[

\]

This rule instance means that if the elements $x_{1}, x_{2}, \ldots, x_{n}$ are all in A then x is also in A.
Needless to say, if we have an axiom of the form
then $x \in A$, as there are no premises to satisfy.
For a given set of axioms and inference rules, we define the rule operator $R: \mathcal{P}(\mathbf{C o m} \times \Sigma \times \Sigma) \rightarrow$ $\mathcal{P}(\mathbf{C o m} \times \Sigma \times \Sigma)$ as follows:

$$
R(S)=\left\{x \left\lvert\, \frac{x_{1} x_{2} \ldots x_{n}}{x}\right. \text { is a rule instance and } x_{1}, \ldots, x_{n} \in S\right\}
$$

The operator R "encapsulates" everything we know about the axioms and inference rules.

Properties of the Rule Operator

The rule operator R satisfies the following properties -

- $R(A \bigcup B) \supseteq R(A) \bigcup R(B)$
- $R(A \bigcap B) \subseteq R(A) \bigcap R(B)$
- $A \subseteq B \Rightarrow R(A) \subseteq R(B)$ (Operator R is monotonic)
$R(\emptyset)$ gives all instances of the axioms. $R^{2}(\emptyset)$ gives all evaluations that can be deduced in one step, i.e. that have a proof tree of depth 1 .

What properties do we need for A ?

- Consistent - every element in A should be derivable from a rule, i.e. $A \subseteq R(A)$
- Closed - there are no new elements to derive, i.e. $A \supseteq R(A)$

These properties imply $A=R(A)$. A is therefore a fixed point of R.
Definition: For some function $f: D \rightarrow D$ and some $x \in D$, if $f(x)=x$ then x is said to be a fixed point of f.

One function could have multiple fixed points, and indeed our rule operator R does in general have multiple fixed points.

Defining A

For inductively defined sets, we want A to contain all and only the evaluations with finite proof trees, i.e. we would like

$$
\begin{aligned}
A & =R(\emptyset) \cup R^{2}(\emptyset) \cup \ldots \\
& =\bigcup_{n \in \omega} R_{n}(\emptyset)
\end{aligned}
$$

Claim: $A=\bigcup_{n \in \omega} R_{n}(\emptyset)$ is a fixed point of R.
Proof:
(1) $A \supseteq R(A)$

Let $x \in R(A)$. We need to show that $x \in A$.
For this we will first show that $\forall n R^{n}(\emptyset) \subseteq R^{n+1}(\emptyset)$
For $n=0$ this trivially holds for $\emptyset \subseteq R(\emptyset)$.
Now assume the inductive hypothesis,

$$
R^{n}(\emptyset) \subseteq R^{n+1}(\emptyset)
$$

Using the monotonicity property of R we have

$$
R^{n+1}(\emptyset) \subseteq R^{n+2}(\emptyset)
$$

Hence, by induction, $\forall n R^{n}(\emptyset) \subseteq R^{n+1}(\emptyset)$.
Now, $x \in R(A)$, so there is some rule instance

$$
\begin{array}{llll}
x_{1} & x_{2} \quad \ldots & x_{n} \\
\hline
\end{array}
$$

with $x_{1}, x_{2}, \ldots, x_{n} \in A$.
Since all the premises $x_{1}, x_{2}, \ldots, x_{n} \in A$ have finite proof trees, there must be some finite m such that $x_{1}, x_{2}, \ldots, x_{n} \in R^{m}(\emptyset)$, which implies $x \in R^{m+1}(\emptyset) \subseteq A$. (Note: if there were an infinite number of premises in the rule instance, then we would not be able to find a finite m. However, as all our inference rules have a finite number of premises, we are safe!)

So, $x \in R(A) \Rightarrow x \in A$ and thus $A \supseteq R(A)$.
(2) $A \subseteq R(A)$

Let $x \in A . x$ has a finite proof tree, so there exists some finite m such that $x \in R^{m}(\emptyset)$. So $x_{1}, x_{2}, \ldots, x_{n} \in$ $R^{m-1}(\emptyset)$. Therefore $x \in R\left(R^{m-1}(\emptyset)\right)$.

Since $R^{m-1}(\emptyset) \subseteq A$, from monotonicity, $R\left(R^{m-1}(\emptyset)\right) \subseteq R(A)$. Therefore $x \in R(A)$.
So $A \subseteq R(A)$.
From (1) and (2) it follows that $A=R(A)$ and so A is a fixed point.
Claim: A is the least closed set of R.
Proof: Suppose B is closed under R, that is $B \supseteq R(B)$. We need to show that $A \subseteq B$.

$$
\begin{aligned}
& \emptyset \subseteq B \\
& \text { So } \quad R(\emptyset) \subseteq R(B) \\
& R^{2}(\emptyset) \subseteq R^{2}(B) \\
& \vdots \quad: \\
& R^{n}(\emptyset) \subseteq R^{n}(B) \\
& \Rightarrow \quad A=\bigcup_{n \in \omega} R^{n}(\emptyset) \subseteq \bigcup_{n \in \omega} R^{n}(B)=B
\end{aligned}
$$

So A is the least closed set of R.
Since all fixed points of R must be closed, A is also the least fixed point of R :

$$
\forall B \subseteq \operatorname{Com} \times \Sigma \times \Sigma, \quad R(B)=B \Rightarrow A \subseteq B
$$

Definition: fix : $(D \rightarrow D) \rightarrow D$ is the least fixed point operator. It takes some relationship defined on $D \rightarrow D$, and returns the least fixed point that the relationship implies. This is relative to some ordering on D : in this case, \subseteq.

We have just shown that $\operatorname{fix}(R)=A$.

Functions

A function $f: A \rightarrow B$ can be regarded as a set

$$
\left\{\left\langle a_{0}, b_{0}\right\rangle,\left\langle a_{0}, b_{0}\right\rangle, \ldots\right\} \equiv\left\{a_{0} \mapsto b_{0}, a_{1} \mapsto b_{1}, \ldots\right\} a_{i} \in A, b_{i} \in B
$$

This set is known as the extension of f. When f is regarded in this way $f \subseteq A \times B$.
Alternatively, we could write $f \in A \rightarrow B \subseteq \mathcal{P}(A \times B)$ where $\mathcal{P}(X)$ is the power set of X - the set of all possible subsets of X. Note that we can also write B^{A} for $A \rightarrow B$.

By convention $A \rightarrow B$ means total functions from A to B, and $A \rightharpoonup B$ means partial functions from A to B. In general we will only be dealing with total functions.

Total functions must have certain properties:

1. No a shows up more than once in the extension of f. That is, if $f(a)=b_{1}$ and $f(a)=b_{2}$ then $b_{1}=b_{2}$.
2. Every a shows up at least once in the extension of f.

We can write functions like inference rules provided the following conditions are met:

1. Every a is covered by exactly 1 rule.
2. There is a well-founded relation on A that the rules respect.

For example, consider the successor function $s: \mathbf{N} \rightarrow \mathbf{N}$:

$$
s(a)= \begin{cases}2 & \text { if } a=1 \\ s(n)+1 & \text { if } a=n+1\end{cases}
$$

Each natural number is covered by exactly one rule for $s: 1$ is covered by the first rule, and all numbers greater than 1 are covered by the second. Since $s(a)$ is defined in terms of $s(n)$, we need some well-founded ordering \prec on the natural numbers such that $n \prec a$ to ensure no infinite descending chains occur. The natural ordering on natural numbers satisifes this.

The axiom and inference rule for s are:

$$
\overline{s(a)=2}(\text { where } a=1)
$$

$$
\frac{s(n)=y}{s(a)=x}(\text { where } \mathrm{a}=\mathrm{n}+1, \mathrm{x}=\mathrm{y}+1)
$$

An instance of the inference rule is

$$
\frac{s(37)=38}{s(38)=39}
$$

