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Motivation

We have been using inference rules to define evaluation. For example,

〈a0, σ〉 ⇓ n0 〈a1, σ〉 ⇓ n1

〈a0 + a1, σ〉 ⇓ n
(n0 + n1 = n)

However, when we do proof trees we use rule instances:

〈2, σ〉 ⇓ 2 〈x, σ〉 ⇓ 2
〈2 + x, σ〉 ⇓ 4

Note that we don’t bother writing the side condition for rule instances: 2 + 2 = 4. The side condition is
only used to decide that this is a valid rule instance.

We have been interested in finding the set A of all valid evaluations. An evaluation maps a command
and a state onto a new state, so A ⊆ Com × Σ × Σ. More generally, consider defining an arbitary set A
using inference rules.

The Rule Operator

Suppose we have a rule instance of the form

x1 x2 . . . xn

x

This rule instance means that if the elements x1, x2, . . . , xn are all in A then x is also in A.
Needless to say, if we have an axiom of the form

x

then x ∈ A, as there are no premises to satisfy.
For a given set of axioms and inference rules, we define the rule operator R : P(Com × Σ × Σ) →

P(Com × Σ × Σ) as follows:

R(S) =
{

x
∣∣∣x1 x2 . . . xn

x
is a rule instance and x1, . . . , xn ∈ S

}

The operator R “encapsulates” everything we know about the axioms and inference rules.

Properties of the Rule Operator

The rule operator R satisfies the following properties -

• R(A
⋃

B) ⊇ R(A)
⋃

R(B)

• R(A
⋂

B) ⊆ R(A)
⋂

R(B)

• A ⊆ B ⇒ R(A) ⊆ R(B) (Operator R is monotonic)

R(∅) gives all instances of the axioms. R2(∅) gives all evaluations that can be deduced in one step, i.e.
that have a proof tree of depth 1.
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What properties do we need for A?

• Consistent — every element in A should be derivable from a rule, i.e. A ⊆ R(A)

• Closed — there are no new elements to derive, i.e. A ⊇ R(A)

These properties imply A = R(A). A is therefore a fixed point of R.
Definition: For some function f : D → D and some x ∈ D, if f(x) = x then x is said to be a fixed point

of f .
One function could have multiple fixed points, and indeed our rule operator R does in general have

multiple fixed points.

Defining A

For inductively defined sets, we want A to contain all and only the evaluations with finite proof trees, i.e.
we would like

A = R(∅) ∪ R2(∅) ∪ . . .

=
⋃

n∈ω
Rn(∅)

Claim: A =
⋃

n∈ωRn(∅) is a fixed point of R.
Proof:
(1) A ⊇ R(A)
Let x ∈ R(A). We need to show that x ∈ A.
For this we will first show that ∀n Rn(∅) ⊆ Rn+1(∅)
For n = 0 this trivially holds for ∅ ⊆ R(∅).
Now assume the inductive hypothesis,

Rn(∅) ⊆ Rn+1(∅)

Using the monotonicity property of R we have

Rn+1(∅) ⊆ Rn+2(∅)

Hence, by induction, ∀n Rn(∅) ⊆ Rn+1(∅) .
Now, x ∈ R(A), so there is some rule instance

x1 x2 . . . xn

x

with x1, x2, . . . , xn ∈ A.
Since all the premises x1, x2, . . . , xn ∈ A have finite proof trees, there must be some finite m such that

x1, x2, . . . , xn ∈ Rm(∅), which implies x ∈ Rm+1(∅) ⊆ A. (Note: if there were an infinite number of premises
in the rule instance, then we would not be able to find a finite m. However, as all our inference rules have a
finite number of premises, we are safe!)

So, x ∈ R(A) ⇒ x ∈ A and thus A ⊇ R(A).

(2) A ⊆ R(A)
Let x ∈ A. x has a finite proof tree, so there exists some finite m such that x ∈ Rm(∅). So x1, x2, . . . , xn ∈

Rm−1(∅). Therefore x ∈ R(Rm−1(∅)).
Since Rm−1(∅) ⊆ A, from monotonicity, R(Rm−1(∅)) ⊆ R(A). Therefore x ∈ R(A).
So A ⊆ R(A).

From (1) and (2) it follows that A = R(A) and so A is a fixed point.

Claim: A is the least closed set of R.
Proof: Suppose B is closed under R, that is B ⊇ R(B). We need to show that A ⊆ B.
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∅ ⊆ B

So R(∅) ⊆ R(B)
R2(∅) ⊆ R2(B)

...
...

Rn(∅) ⊆ Rn(B)

⇒ A =
⋃

n∈ω Rn(∅) ⊆ ⋃
n∈ω Rn(B) = B

So A is the least closed set of R.
Since all fixed points of R must be closed, A is also the least fixed point of R:

∀B ⊆ Com× Σ × Σ, R(B) = B ⇒ A ⊆ B

Definition: fix : (D → D) → D is the least fixed point operator. It takes some relationship defined on
D → D, and returns the least fixed point that the relationship implies. This is relative to some ordering on
D: in this case, ⊆.

We have just shown that fix(R) = A.

Functions

A function f : A → B can be regarded as a set

{〈a0, b0〉, 〈a0, b0〉, . . .} ≡ {a0 �→ b0, a1 �→ b1, . . .} ai ∈ A, bi ∈ B

This set is known as the extension of f . When f is regarded in this way f ⊆ A × B.
Alternatively, we could write f ∈ A → B ⊆ P(A × B) where P(X) is the power set of X — the set of

all possible subsets of X . Note that we can also write BA for A → B.
By convention A → B means total functions from A to B, and A ⇀ B means partial functions from A

to B. In general we will only be dealing with total functions.
Total functions must have certain properties:

1. No a shows up more than once in the extension of f . That is, if f(a) = b1 and f(a) = b2 then b1 = b2.

2. Every a shows up at least once in the extension of f .

We can write functions like inference rules provided the following conditions are met:

1. Every a is covered by exactly 1 rule.

2. There is a well-founded relation on A that the rules respect.

For example, consider the successor function s : N → N:

s(a) =
{

2 if a = 1
s(n) + 1 if a = n + 1

Each natural number is covered by exactly one rule for s: 1 is covered by the first rule, and all numbers
greater than 1 are covered by the second. Since s(a) is defined in terms of s(n), we need some well–founded
ordering ≺ on the natural numbers such that n ≺ a to ensure no infinite descending chains occur. The
natural ordering on natural numbers satisifes this.

The axiom and inference rule for s are:

s(a) = 2
(where a = 1)
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s(n) = y

s(a) = x
(where a = n+1, x=y+1)

An instance of the inference rule is
s(37) = 38
s(38) = 39
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