Scribe: Michael Brukman & Michael Kamzyuk

September 5, 2001 Lecturer: Andrew Myers

A configuration is a tuple of the form $\langle c, \sigma \rangle$, where c is the command to be executed, and σ is the current store. The program terminates when we reach a configuration of the form $\langle \mathsf{skip}, \sigma \rangle$. The idea behind small-step semantics is that we make one small step at a time. A small step is the evaluation of some part of the expression. The notation is as follows: if a denotes some arithmetic expression, then a' denotes a after one small step was made. Similarly, if b is a boolean expression, then b' is b after one small step. These notes cover the small-step semantics.

Rules are of the form $\langle c, \sigma \rangle \mapsto \langle c', \sigma' \rangle$, where $\mapsto \subseteq (Com \times Store) \times (Com \times Store)$

1 Commands

1.1 Skip

 $\langle \mathsf{skip}, \sigma \rangle$ - we are at the final step. No rule is needed.

1.2 Assignment

$$\frac{\langle a,\sigma\rangle \mapsto \langle a',\sigma\rangle}{\langle x:=a,\sigma\rangle \mapsto \langle x:=a',\sigma\rangle} \quad \frac{}{\langle x:=n,\sigma\rangle \mapsto \langle \mathsf{skip},\sigma[x\mapsto n]\rangle}$$

1.3 ; (Semicolon)

$$\frac{\langle c_0, \sigma \rangle \mapsto \langle c'_0, \sigma' \rangle}{\langle c_0; c_1, \sigma \rangle \mapsto \langle c'_0; c_1, \sigma' \rangle} \quad \frac{\langle \mathsf{skip}; c_1, \sigma \rangle \mapsto \langle \mathsf{skip}, \sigma[x \mapsto n] \rangle}{\langle \mathsf{skip}; c_1, \sigma \rangle \mapsto \langle \mathsf{skip}, \sigma[x \mapsto n] \rangle}$$

1.4 If

$$\frac{\langle b,\sigma\rangle \mapsto \langle a',\sigma\rangle}{\langle \text{if } b \text{ then } c_0 \text{ else } c_1,\sigma\rangle \mapsto \langle \text{if } b' \text{ then } c_0 \text{ else } c_1,\sigma\rangle}$$
$$\overline{\langle \text{if } true \text{ then } c_0 \text{ else } c_1\rangle \mapsto \langle c_0,\sigma\rangle} \quad \overline{\langle \text{if } false \text{ then } c_0 \text{ else } c_1\rangle \mapsto \langle c_1,\sigma\rangle}$$

1.5 While

$$\langle \mathsf{while}\ b\ \mathsf{do}\ c, \sigma \rangle \mapsto \langle \mathsf{if}\ b\ \mathsf{then}\ (c;\ \mathsf{while}\ b\ \mathsf{do}\ c) \mathsf{else}\ \mathsf{skip}, \sigma \rangle$$

1.6 Variable evaluation

$$\overline{\langle x, \sigma \rangle \mapsto \langle \sigma(x), \sigma \rangle}$$

2 Order of evaluation

Some rules enforce the order of evaluation and other rules actually evaluate. For instance, simply having the rule on the left will force left-to-right evaluation, while having both allows evaluation of the right side before the evaluation of the left side has been completed:

$$\frac{\langle a_0, \sigma \rangle \mapsto \langle a_0', \sigma \rangle}{\langle a_0 \oplus a_1, \sigma \rangle \mapsto \langle a_0' \oplus a_1, \sigma \rangle} \quad \frac{\langle a_1, \sigma \rangle \mapsto \langle a_1', \sigma \rangle}{\langle a_0 \oplus a_1, \sigma \rangle \mapsto \langle a_0 \oplus a_1', \sigma \rangle}$$

3 Arithmetic Expressions

Evaluation of arithmetic expressions proceeds as normal with addition (left rule):

$$\frac{\langle n = n_0 \oplus n_1, \sigma \rangle}{\langle n_0 \oplus n_1, \sigma \rangle \mapsto \langle n, \sigma \rangle} \quad \frac{\langle n = \lfloor n_0 \div n_1 \rfloor, \sigma \rangle}{\langle n_0 \div n_1, \sigma \rangle \mapsto \langle n, \sigma \rangle}$$

The rule for division (right rule above), however, cannot be accepted since it may result in a runtime error on $\langle 2 \div 0, \sigma \rangle \mapsto ?$, resulting in a stuck configuration.

4 Parallelism

Since the commands in the language IMP may lack interdependency on each other, we may allow command evaluation to proceed in parallel as given by these inference rules:

$$\frac{\langle c_0, \sigma \rangle \mapsto \langle c_0', \sigma' \rangle}{\langle c_0 | c_1, \sigma \rangle \mapsto \langle c_0' | c_1, \sigma \rangle} \quad \frac{\langle c_1, \sigma \rangle \mapsto \langle c_1', \sigma' \rangle}{\langle c_0 | c_1, \sigma \rangle \mapsto \langle c_0 | c_1', \sigma \rangle}$$

This allows evaluation of either commands in a pair of parallel commands proceed before completion of evaluation of the other.

5 Non-determinism

Non-determinism allows us to specify that either of two commands will be executed at run time:

$$\overline{\langle c_0 \square c_1, \sigma \rangle \mapsto \langle c_0, \sigma \rangle} \quad \overline{\langle c_0 \square c_1, \sigma \rangle \mapsto \langle c_1, \sigma \rangle}$$

It is interesting to note that we could not specify either parallelism or non-determinism using large-step semantics, but small-step semantics allow us to express both succinctly.

6 Equivalence of Large- and Small-Step Semantics

In addition, it turns out that large-step semantics are equivalent to small-step semantics. Define the relation \mapsto^* as follows:

$$\frac{}{\langle c,\sigma\rangle \mapsto^* \langle c,\sigma\rangle} \quad \frac{\langle c,\sigma\rangle \mapsto \langle c'',\sigma''\rangle \quad \langle c'',\sigma''\rangle \mapsto^* \langle c',\sigma'\rangle}{\langle c,\sigma\rangle \mapsto^* \langle c',\sigma'\rangle}$$

The idea is to prove that

$$\langle c, \sigma \rangle \Downarrow \sigma' \iff \langle a, \sigma \rangle \mapsto^* \langle skip, \sigma' \rangle$$

Proof (this lecture covered only arithmetic expressions): by induction on the depth of the abstract syntax tree of the expression. For arithmetic expressions we need

•
$$\langle a, \sigma \rangle \Downarrow n \iff \langle a, \sigma \rangle \mapsto^* \langle n, \sigma \rangle$$

- $\langle x, \sigma \rangle \Downarrow \sigma(x) \iff \langle x, \sigma \rangle \mapsto^* \langle \sigma(x), \sigma \rangle$
- $\langle a_0 \oplus a_1, \sigma \rangle \Downarrow n \iff \langle a_0 \oplus a_1, \sigma \rangle \mapsto^* \langle n, \sigma \rangle$

The first two cases are trivial.

Now assume $\langle a_0 \oplus a_1, \sigma \rangle \Downarrow n$. Then $\langle a_0, \sigma \rangle \Downarrow n_0$ and $\langle a_1, \sigma \rangle \Downarrow n_1$, where $n_0 \oplus n_1 = n$. By induction hypothesis, $\langle a_0, \sigma \rangle \mapsto^* \langle n_0, \sigma \rangle$ and $\langle a_0, \sigma \rangle \mapsto^* \langle n_0, \sigma \rangle$, since the tree associated with a_0 and the tree associated with a_1 are both less deep than the tree associated with $a_0 \oplus a_1$. Therefore, by induction, we have $\langle a_0, \sigma \rangle \mapsto^* \langle n_0, \sigma \rangle$, and $\langle a_0, \sigma \rangle \mapsto^* \langle n_0, \sigma \rangle$. Thus, $\langle a_0 \oplus a_1, \sigma \rangle \mapsto^* \langle n_0 \oplus a_1, \sigma \rangle \mapsto^* \langle n_0 \oplus n_1, \sigma \rangle \mapsto \langle n, \sigma \rangle$.

The other direction was not covered in lecture.