CS611 Lecture 3 Small-Step Semantics September 5, 2001
Scribe: Michael Brukman & Michael Kamzyuk Lecturer: Andrew Myers

A configuration is a tuple of the form (¢, o), where ¢ is the command to be executed, and o is the
current store. The program terminates when we reach a configuration of the form (skip, o). The idea behind
small-step semantics is that we make one small step at a time. A small step is the evaluation of some part of
the expression. The notation is as follows: if a denotes some arithmetic expression, then a’ denotes a after
one small step was made. Similarly, if b is a boolean expression, then ' is b after one small step. These
notes cover the small-step semantics.

Rules are of the form (¢, o) — (¢, 0’), where —C (Com x Store) x (Com x Store)

1 Commands

1.1 Skip

(skip, o) - we are at the final step. No rule is needed.

1.2 Assignment

(x :=a,0) — (x:=d,0) (xr:=n,0)— (skip,o[z — n])
1.3 ; (Semicolon)

{co,0) — {cp,0")
<CO; C1, J> = <C6a C1, OJ> <Sk|pa C1, 0> = <Sk|pa O’[iL’ = TL]>

1.4 |If

{b,0) = {d,0)

(if b then ¢q else ¢1,0) — (if b/ then ¢q else ¢1,0)

(if true then cq else ¢1) — (co,0) (if false then ¢g else ¢1) — {(c1,0)

1.5 While

(while b do ¢, ) — (if b then (¢; while b do c)else skip, o)

1.6 Variable evaluation

(z,0) = (o(z),0)



2 Order of evaluation

Some rules enforce the order of evaluation and other rules actually evaluate. For instance, simply having
the rule on the left will force left-to-right evaluation, while having both allows evaluation of the right side
before the evaluation of the left side has been completed:

{ag, o) — (ay’, o) (a1,0) — (a1, 0)

(a0 ® ay,0) — (ap’ ® ar,0) (ap ® a1,0) — (ao ® ar’,0)

3 Arithmetic Expressions

Evaluation of arithmetic expressions proceeds as normal with addition (left rule):

(n=ng®ni,o) (n=|no+ni], o)

(no ®ny1,0) — (n,0) (ng+ny1,o)— (n,o)

The rule for division (right rule above), however, cannot be accepted since it may result in a runtime
error on (2 +0,0) — 7, resulting in a stuck configuration.

4 Parallelism
Since the commands in the language IMP may lack interdependency on each other, we may allow command
evaluation to proceed in parallel as given by these inference rules:

<CO, U> — <COla Ul> <Clv 0> — <Cllv U/>

{coler, o) = (co’lex, ) (coler, o) = (coler’, o)

This allows evaluation of either commands in a pair of parallel commands proceed before completion of
evaluation of the other.

5 Non-determinism

Non-determinism allows us to specify that either of two commands will be executed at run time:

(co O cr,0) — {co,0) {coOecy,0) — {c1,0)

It is interesting to note that we could not specify either parallelism or non-determinism using large-step
semantics, but small-step semantics allow us to express both succinctly.

6 Equivalence of Large- and Small-Step Semantics

In addition, it turns out that large-step semantics are equivalent to small-step semantics. Define the relation
—* as follows:

(c,a) =" {c,0) (c,0) —
The idea is to prove that
(¢,0) | 0/ <= (a,0) —* (skip,o’)

Proof (this lecture covered only arithmetic expressions): by induction on the depth of the abstract syntax
tree of the expression. For arithmetic expressions we need

e (a,0) | n<= (a,0) —* (n,o)



o (z,0) | o(z) < (z,0) =" (0(2),0)

e (ap D ay,o) | n< (ap ®ai,o) —* (n,o)

The first two cases are trivial.

Now assume (ag ® a1,0) | n. Then {(ag,0) | no and {(a1,0) | ni, where ng & n; = n. By induction
hypothesis, {(ag,0) —* (ng,o) and (ag,o) —* (ng,o) , since the tree associated with ay and the tree
associated with a; are both less deep than the tree associated with ag @ a;. Therefore, by induction, we
have (ag, o) —* (ng,o), and {(ag, o) —* (ng, o). Thus, (ag ® a1,0) —* (ng ® ar,o) —* (ng ®ni,0) — (n,o).

The other direction was not covered in lecture.



