
CS611 Lecture 2 The Large-Step Semantics of IMP 9/3/01
Scribe: Alexandru Niculescu-Mizil and Sabina Petride Lecturer: Andrew Myers

1 Review of IMP Syntax

The syntax in BNF form is:

a ::= n | x | a0 op a1

b::= true | false | ¬b0 | b0 ∧ b1 | b0 ∨ b1

c ::= skip | x := a | if b then c0 else c1 | while b do c0 | c0; c1

where n ∈ Z, x is any variable, op ∈ {+,−, ∗}, and a, a0, a1 are metavariables in AExp, b, b0, b1 metavariables
in BExp and c, c0, c1 metavariables in Com.

2 Rules

The evaluation relations are of three types:
〈a, σ〉 ⇓ n , for Arithmetic Expressions
〈b, σ〉 ⇓ t , for Boolean Expressions
〈c, σ〉 ⇓ σ′ , for Commands

where t ∈ { true, false }, and σ, σ′ are states.

2.1 Rules for Arithmetic Expressions

Axioms:

〈n, σ〉 ⇓ n

〈X, σ〉 ⇓ σ(X)

Inference rules:
〈a0, σ〉 ⇓ n0 〈a1, σ〉 ⇓ n1

〈a0 op a1, σ〉 ⇓ n , where n = n0 op n1.

Obs. op is part of IMP syntax, while op is arithmetic operation, not necessarily the same.

2.2 Rules for Boolean Expressions

Axioms:

〈true, σ〉 ⇓ true

〈false, σ〉 ⇓ false

Obs. true, false are part of IMP syntax, while true and false are truth values.
Inference rules:

Negation:

〈b, σ〉 ⇓ false

〈¬b, σ〉 ⇓ true

〈b, σ〉 ⇓ true

〈¬b, σ〉 ⇓ false

Conjunction:

〈b0, σ〉 ⇓ true 〈b1, σ〉 ⇓ true

〈b0 ∧ b1, σ〉 ⇓ true

〈b0, σ〉 ⇓ false

〈b0 ∧ b1, σ〉 ⇓ false

〈b1, σ〉 ⇓ false

〈b0 ∧ b1, σ〉 ⇓ false

1

The above rules do not specify an order of evaluation. Since in IMP boolean expressions do not have side
effects, the order of evaluation isn’t important.We may impose an order of evaluation and have the same
semantics. The left-first sequential rules are:

〈b0, σ〉 ⇓ false

〈b0 ∧ b1, σ〉 ⇓ false

〈b0, σ〉 ⇓ true 〈b1, σ〉 ⇓ false

〈b0 ∧ b1, σ〉 ⇓ false

Disjunction:

〈b0, σ〉 ⇓ false 〈b1, σ〉 ⇓ false

〈b0 ∨ b1, σ〉 ⇓ false

〈b0, σ〉 ⇓ true

〈b0 ∨ b1, σ〉 ⇓ true

〈b1, σ〉 ⇓ true

〈b0 ∧ b1, σ〉 ⇓ true

The same order imposed by conjunction can be achieved by:

〈b0, σ〉 ⇓ true

〈b0 ∨ b1, σ〉 ⇓ true

〈b0, σ〉 ⇓ false 〈b1, σ〉 ⇓ true

〈b0 ∨ b1, σ〉 ⇓ true

2.3 Evaluation Rules for IMP Commands

Skip:

〈skip, σ〉 ⇓ σ

Semicollon:
〈c0, σ〉 ⇓ σ′′ 〈c1, σ

′′〉 ⇓ σ′

〈c0; c1, σ〉 ⇓ σ′

Attribution:
〈x, σ〉 ⇓ n

〈x := a, σ〉 ⇓ σ[x → n]

where σ[x → n](y) is σ(y) if y �= x and n if y = x

while do:
〈b, σ〉 ⇓ false

〈while b do c, σ〉 ⇓ σ

〈b, σ〉 ⇓ true 〈c, σ〉 ⇓ σ′′ 〈while b do c, σ′′〉 ⇓ σ′

〈while b do c, σ〉 ⇓ σ′

if then else:
〈b, σ〉 ⇓ true 〈c0, σ〉 ⇓ σ′

〈if b then c0 else c1, σ〉 ⇓ σ′
〈b, σ〉 ⇓ false 〈c1, σ〉 ⇓ σ′

〈if b then c0 elsec1, σ〉 ⇓ σ′

3 Proof Trees

A program in IMP is actually a command. The question is when does the semantics permit a particular
execution result? The approach is that, given a program c and an initial state σ, 〈c, σ〉 ⇓ σ′ is legal if there
is a derivation starting with 〈c, σ〉 ⇓ σ′ and built in an upward fashion:

• find a rule with the conclusion 〈c, σ〉 ⇓ σ′

• if the rule is an axiom, then the derivation is complete, otherwise recursively construct a finite height
derivation for each of the hypotheses.

2

Such a derivation is also called a proof tree. Notice that each step in a proof tree is a rule instance:
a rule with all metavariables substituted consistently with values from the corresponding sets.

For example the proof tree for 〈if x < y then x := 0 else skip, σ1〉 ⇓ σ2 is:

〈1, σ1〉 ⇓ 1
〈x, σ1〉 ⇓ 1

〈2, σ1〉 ⇓ 2
〈y, σ1〉 ⇓ 2

〈x < y, σ1〉 ⇓ true

〈0, σ1〉 ⇓ 0
〈x := 0, σ1〉 ⇓ σ2

〈if x < y then x := 0 else skip, σ1〉 ⇓ σ2

where we use the notation σ0 for the state in which all variables have value 0, and σ1 = σ0[x → 1, y → 2],
σ2 = σ0[y → 2]. Note that σ1(x) = 1, σ1(y) = 2, and σ2(x) = 0.

3.1 A Rule Instance Not Part of Any Proof

Rule instances are formed by mechanically substituting for metavariables appearing in rules. This sub-
stitution can produce rule instances that will never appear in any proof. For example, the instance
〈2, σ〉 ⇓ 2 〈2, σ〉 ⇓ 3

〈2 + 2, σ〉 ⇓ 5 where we applied the rule for ⊕ → +, a0 → 2, a1 → 2, n0 → 2, n1 → 3, n → 5 is a
rule instance. However it will never appear in any proof because 〈2, σ〉 ⇓ 3 is not an axiom instance. Note
that the only proper axiom is 〈n, σ〉 ⇓ n (the same integer n).

4 Problems with Large Step Semantics

4.1 Infinite Loop

Let’s consider the configuration 〈while true do skip, σ0〉. Checking if there is a proof tree comes to writing:

〈true, σ0〉 ⇓ true 〈skip, σ0〉 ⇓ σ0

· · ·
〈while true do skip, σ0〉 ⇓ σ

〈while true do skip, σ0〉 ⇓ σ

Note that the height of the proof tree for 〈while true do skip, σ0〉 ⇓ σ in the premise must be as large
as the height of the whole tree since it is the same relation as in the conclusion. Therefore the height of the
proof tree cannot be finite.

Since the tree has infinite height, it follows that there is no proof tree for this case, and the interpreter
will never stop. This is a weakness of the large step semantics for IMP, since it says nothing about the
correctness of programs that have to run forever, as servers.

4.2 Handling Errors

Suppose that we extend the syntax of arithmetic expressions by allowing division:

a ::= ... | a0 ÷ a1

The corresponding large step rule is:
〈a0, σ〉 ⇓ n0 〈a1, σ〉 ⇓ n1

〈a0 ÷ a1, σ〉 ⇓ n where n = �n0/n1�
Then consider the following example: 〈2÷ 0, σ〉 ⇓ n. If we try ro construct a proof tree we will have:

〈2, σ〉 ⇓ 2 〈0, σ〉 ⇓ 0
〈2 ÷ 0, σ〉 ⇓ n where n = �2/0�.

Since there is no n such that n = �2/0�, it means that there is no proof tree for 〈2÷0, σ〉 ⇓ n. This is again
a weakness of the large step semantics for IMP, since there is no explicit difference between nontermination,
as in the previous section, and error.

3

4.3 Parallel Composition

Suppose we extend the syntax by allowing parallel composition of commands:

c ::= ... | c0|c1

where the execution of c0|c1 consists of simultaneously executing c0 and c1, allowing that each command to
have side effects on the other. If we try to find the associated rules we discover it is impossible, since there
is no way to capture the situation when the execution of, for example, c1 has side effects on the execution
of c0. So the large step semantics does not cover parallel composition.

4.4 Nondeterministic Choice

Finally, we extend the syntax with the deterministic choice of commands:

c ::= ... | c0�c1

where the execution of c0�c1 stands for the nondeterministic execution of either c0 or c1. The obvious
corresponding rules are:

〈c0, σ〉 ⇓ σ′

〈c0�c1, σ〉 ⇓ σ′
〈c1, σ〉 ⇓ σ′

〈c0�c1, σ〉 ⇓ σ′

But what if the execution of the command first chosen by the interpreter never ends? It won’t agree
with the semantics, which say that there is a legal execution. The interpreter must choose correctly to avoid
non-termination or errors. This resumes to supposing that it should be the case that, if at least one of the
commands is correct, then this is the first chosen (the so called “angelic” choice, implementable as a fork to
create two parallel threads; first one to complete wins).

4

