
CS611 Lecture 1 Introduction to IMP 8/31/2001
Scribe: Manpreet Singh (manpreet@cs)

Rohit A (rohit@cs) Lecturer: Andrew Myers

IMP is an “imperative” language because program execution involves carrying out a series of explicit
commands to change state. Formally IMP’s behaviour is captured by the syntactic sets and the operational
semantics.

Syntactic Sets associated with IMP

• numbers Z consisting of integers. n ranges over Z.

• truth values T = { true, false }. t ranges over T.

• locations/Variables Loc/Var. x ranges over Loc. Each location stores an integer.

• The set of all legal arithmetic expressions AExp. a ranges over AExp. a consists of integers and
variables and the closure of the above set under addition, subtraction and multiplication.

• The set of all legal boolean expressions BExp. b ranges over BExp. b consists of true, false, and
comparisons and the closure of the above set under negation, conjunction and disjunction.

• The set of all legal commands Com. c ranges over Com. A command can be a “do nothing”(skip),
an assignment, a sequence of commands , if-then-else or while-do-loop.

We assume that the syntactic structure of numbers and locations is given. For example locations are
named in the same way as in C and numbers are represented as decimal numerals. The rest are described
using BNF 1.

• AExp

a ::= n | x | a0 + a1 | a0 − a1 | a0 ∗ a1

• BExp

b ::=true| false | a0 = a1 | a0 < a1 | ¬b | b0 ∨ b1 | b0 ∧ b1

• Com

c ::=skip| x := a | c0; c1 |if b then c0 else c1 | while b do c

Example :
while x < 0 do if x < y then (t := x ; x := y ; y := t) else skip; x := x − y

Note that there is more than one way of parsing the above string. A parse tree for this program is
shown in figure 1. We assume that all elements of the syntactic sets are parse (or syntax) trees. We write
parantheses only when it is needed to make it clear which abstract syntax tree do we mean.

Structural Operational Semantics (SOS)
Operational semantics describes the steps taken to execute a program. Structural operational semantics

associates legal executions with proof. Thus it provides a compact and easy way for proving language
properties.

Large step semantics
Recall that an IMP program is a command c. c is completely defined by the contents of the locations

(starting with predefined values in locations) after the execution of c. Formally, it involves the definition of
states, evaluation of arithmetic/boolean expression and evaluation of commands.

1Backus-Naur Form is a compact way of writing a context-free grammar. Different productions with the same left-hand side
are combined, the right-hand sides separated by vertical lines

1

While

 >

x 0

;

 := if

x -

x y

<

x y

; skip

:=

x

;

t := :=

x y y t

Figure 1: A syntax tree for the example IMP program

• States The set of states Σ consists of functions σ : Loc → Z. Thus σ(x) is the value/contents of
location x in state σ.

• Evaluation of commands consists of relations ⇓c ⊆ Com × Σ × Σ. A triplet 〈c, σ, σ′〉 ∈⇓c ⇐⇒ c
when executed at initial state σ produces state σ′ at completion. The triplet is also written as

〈c, σ〉 ⇓c σ′

Note that we don’t allow commands which don’t terminate. Also ⇓c is defined as a relation rather
than a function from Com × Σ to Σ because we don’t want to rule out non-deterministic commands.
(For example, c0�c1 can result in more than one state)

• Evaluation of arithmetic expressions consists of relations ⇓a ⊆ AExp × Σ × Z. A triplet 〈a, σ, n〉 ∈
⇓a ⇐⇒ evaluating a in state σ gives n. The triplet is equivalent to 〈a, σ〉 ⇓a n

By setting up the evaluation relation in this way, we are implicitly saying that there are no side effects.

• Evaluation of boolean expressions consists of relations ⇓b ⊆ BExp × Σ × T. A triplet 〈b, σ, t〉 ∈⇓b

⇐⇒ evaluating b in state σ gives t. The triplet is equivalent to 〈b, σ〉 ⇓b t

Due to the same reason as in AExp there are no side effects.

We will drop the subscripts c, a and b in ⇓c, ⇓a, and ⇓b respectively henceforth.

Inference Rules
An inference rule captures the notion that a set of statements imply another statement. We can start to
define some inference rules. The simplest of these are the axioms which have no premises or antecedents.
The following axioms hold for any arbitrary σ.

〈true, σ〉 ⇓ true i.e. ∀σ〈true, σ, true〉 ∈ ⇓b

〈false, σ〉 ⇓ false i.e. ∀σ 〈false, σ, false〉 ∈ ⇓b

〈skip, σ〉 ⇓ σ i.e. ∀σ 〈skip, σ, σ〉 ∈ ⇓c

〈n, σ〉 ⇓ n i.e. ∀σ, n 〈n, σ, n〉 ∈ ⇓a

〈x, σ〉 ⇓ σ(x) i.e. the current value of x in the store.

However for more complex constructs we need inference rules with premises and side-conditions. For
example the statement (〈a0 + a1, σ〉 ⇓ n) follows from the statements (〈a0, σ〉 ⇓ n0), (〈a1, σ〉 ⇓ n1) and
n = n0 + n1. The statement (〈a0 + a1, σ〉 ⇓ n) is the conclusion and the statements (〈a0, σ〉 ⇓ n0) and
(〈a1, σ〉 ⇓ n1) are the premises and n = n0 + n1 is the side condition. The inference rules are typically
written with premises and conclusions separated by a horizontal line as illustrated below:

2

〈a0, σ〉 ⇓ n0 〈a1, σ〉 ⇓ n1

〈a0 + a1, σ〉 ⇓ n where n = n0 + n1

3

