
CS611 Homework 6 DUE: December 7, 2001

What to turn in

Turn in the assignment during class on the due date.

1. Strong normalization (25 pts.)

(a) (20 pts.) Show that all expressions in the language λ→×+ are strongly normalizing by extending
the proof of strong normalization for λ→.

(b) (5 pts.) Where does the proof fail if we add recursive types to the language?

2. Object encodings (35 pts.)

In this problem we will examine two ways to encode object types. These formulations give some insight
into sound subtyping rules for object types in object-oriented languages. Let us consider the typed
lambda calculus extended with pairs, records, recursive types, existential types, and subtyping:

e ::= b | x | λx : τ.e | e0 e1 | 〈e0, e1〉 | left e | right e | {l1 = e1, . . . , ln = en} | e.l |
pack [X = τ, e] | unpack e as [X,x] in e′ | foldµX.τ e | unfold e

τ ::= B | X | τ → τ ′ | τ ∗ τ ′ | {l1 : τ1, . . . , ln : τn} | µX.τ | ∃X.τ

We define a context ∆ to contain the type variables in scope:

∆ ::= ∅ | ∆, X

and augment this definition with the usual rules about the irrelevance of ordering type variables in ∆.
A judgment of the form ∆ ` τ asserts that τ is well-formed in ∆. Thus, we have:

∆ ` B ∆, X ` X
∆ ` τ ∆ ` τ ′

∆ ` τ → τ ′
∆ ` τ ∆ ` τ ′

∆ ` τ ∗ τ ′

∆ ` τ∀i∈{1,...,n}i

∆ ` {l1 : τ1, . . . , ln : τn}
∆, X ` τ
∆ ` µX.τ

∆, X ` τ
∆ ` ∃X.τ

Encoding as recursive records

One way to model objects is as recursive record types of the form µX.{l1 : τ1, . . . , ln : τn}. For instance:

point = µP.{x : real, y : real}
mvpoint = µQ.{x : real, y : real,move : real→ real→ Q}

To construct a point object we might write the function:

make point = λa : real. λb : real. foldpoint {x = a, y = b}

The rules for subtyping in this language can be obtained by modifying the rules given in class for type
equivalence in the typed lambda calculus extended with recursive types. As with type equivalence, we
define a context E containing a set of assumed subtype relations τ1 ≤ τ2, and use the following rule to
terminate the unfolding of recursive types:

∆;E, τ1 ≤ τ2 ` τ1 ≤ τ2

1

Recall the subtyping rules for function types, pairs, and records:

∆;E ` τ ′1 ≤ τ1 ∆;E ` τ2 ≤ τ ′2
∆;E ` τ1 → τ2 ≤ τ ′1 → τ ′2

∆;E ` τ1 ≤ τ ′1 ∆;E ` τ2 ≤ τ ′2
∆;E ` τ1 ∗ τ2 ≤ τ ′1 ∗ τ ′2

∆;E ` τi ≤ τ ′i ∀i∈{1,...,n}

∆;E ` {l1 : τ1, . . . , lm : τm} ≤ {l1 : τ ′1, . . . , ln : τ ′n}
where m ≥ n

(a) (5 pts.) Give the inference rules defining the subtype judgments ∆;E ` µX.τ ≤ τ ′ and ∆;E `
τ ′ ≤ µX.τ , where τ ′ does not have the form µY.τ ′′.

(b) (5 pts.) Give the inference rule defining the subtype judgment ∆;E ` µX.τ ≤ µY.τ ′.
(c) (5 pts.) According to the rules you have given, we should have mvpoint ≤ point. Say whether

each of the following putative subtype relationships also holds. If the relationship holds, give a
subtype derivation (proof tree). If it does not hold, give a counter-example: code demonstrating
that the subtype relationship would be unsafe.

i. µP.{x : P} ≤ µQ.{x : Q}
ii. µP.{mv : int→ P, y : int} ≤ µQ.{mv : int→ Q}
iii. µP.{eq : P → bool, y : int} ≤ µQ.{eq : Q→ bool}
iv. µP.{a : ref P, y : int} ≤ µQ.{a : ref Q} (Note that ref τ ≤ ref τ ′ iff τ ∼= τ ′).
v. µP.{l : P, r : P, v : int} ≤ µQ.{l : Q, r : Q}

Encoding as recursive records with existentials

One problem with the recursive record encoding is that an object’s implementation is visible to its
clients. In languages such as Smalltalk, Java, or C++, the implementation may be hidden by declaring
some fields of the object private; in fact, in Smalltalk, all class members are private and clients can
access the object only through its method interface.
To model this property, we hide the implementation of an object using existential types. We treat
objects as a pair of a state, represented by the type variable X, and a record of methods, each of which
takes an argument of type X. This argument can be considered analogous to this in Java or C++ or
self in Smalltalk. As an example, we might encode the point type above as

point = µP. ∃X.X ∗ {x : X → real, y : X → real}

Note that we are no longer constrained to implement a point as a record of two reals with named x and
y. For instance, we might implement a point as a pair using polar coordinates and define the following
function to create a new point from its Cartesian coordinates:

make point = λa : real. λb : real.

letrec m : {x : (real ∗ real)→ real, y : (real ∗ real)→ real} = {
x = λs : (real ∗ real). (left s) ∗ cos(right s),
y = λs : (real ∗ real). (left s) ∗ sin(right s)} in

let r = sqrt(a ∗ a+ b ∗ b) in

let θ = arcsin(b/r) in

foldpoint (pack [X = real ∗ real, 〈〈r, θ〉,m〉])

Now, to call the method x on a point p, we do:

unpack (unfold p) as [X, o] in

let s : X = (left o) in

let m : {x : X → real, y : X → real} = (right o) in

(m.x s)

Observe that the caller does not know the implementation of the state X.

2

(d) (3 pts.) Using this encoding, what is the type encoding of mvpoint?

(e) (5 pts.) Define a function make mvpoint which, given two reals, returns a new mvpoint representing
that point. The move method should take two real numbers dx and dy and return a new mvpoint
where the x and y coordinates of the original point are offset by dx and dy , respectively. You are
free to implement an mvpoint’s state in any way you choose.

(f) (10 pts.) Give the inference rule defining the subtype judgment ∆;E ` ∃X.τ ≤ ∃X ′.τ ′. The rule
should not require that the types be equivalent; however, if the subtype relation holds in both
directions, the rule should enforce equivalence of the two types.

(g) (2 pts.) Show that ∅; ∅ ` mvpoint ≤ point.

3. Encoding sum and product types in the polymorphic lambda calculus (40 pts.)

Sum types and product types, as seen in λ→×+, are important features in programming languages.
In this problem, we will show that by using some insights from the Curry-Howard isomorphism, sum
types in λ→×+ can be encoded using product types and universal types in the polymorphic lambda
calculus. Similarly, we can encode product types as sum types.

Our source language will consist of the simply typed language extended with sum and product types.

τ ::= B | τ1 → τ2 | τ1 + τ2 | τ1 ∗ τ2
e ::= b | x | λx :τ. e | e1 e2 | inlτ1+τ2e | inrτ1+τ2e | case e0 of e1|e2 | 〈e1, e2〉 | left e | right e

The typing rules for this language are the same as defined in lecture 30.

The target-sum language is the polymorphic lambda calculus extended with only sum types.

τ ::= B | X | τ1 → τ2 | ∀X.τ | τ1 + τ2

e ::= b | x | λx :τ. e | e1 e2 | ΛX.e | e[τ] | inlτ1+τ2e | inrτ1+τ2e | case e0 of e1|e2

The target-product language is the polymorphic lambda calculus extended with only product types.

τ ::= B | X | τ1 → τ2 | ∀X.τ | τ1 ∗ τ2
e ::= b | x | λx :τ. e | e1 e2 | ΛX.e | e[τ] | 〈e1, e2〉 | left e | right e

The target languages have the same typing rules as the source language, extended with two rules for
supporting polymorphism:

∆, X; Γ ` e : τ X /∈ ∆
∆; Γ ` ΛX.e : ∀X.τ

∆; Γ ` e : ∀X.τ ∆ ` τ ′

∆; Γ ` e[τ ′] : τ{τ ′/X}

Note that the rule for type abstraction requires that the new type variable X be fresh, to prevent
capture of type variables appearing in Γ.

Both target languages have the usual rules for well-formed type expressions:

∆, X ` X ∆ ` B
∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2

∆ ` τ1 ∆ ` τ2
∆ ` τ1 ∗ τ2

∆ ` τ1 ∆ ` τ2
∆ ` τ1 + τ2

∆, X ` τ
∆ ` ∀X.τ

Your goal in this problem is to provide typed translations from the source language to each of the two
target languages, and to show that these translations work. Each typed translation will convert type
judgments in the source language into type judgments in the target language, in such a way that a
translated program will automatically have a target language type derivation if its source had a type
derivation in the source language.

3

The Curry-Howard isomorphism will assist you in constructing these translations. We know that the
type τ1 + τ2 corresponds to the formula T1∨T2 and the type τ1 ∗ τ2 corresponds to the formula T1∧T2.
From De Morgan’s rules in classical logic, we know that T1 ∨ T2 ≡ ¬(¬T1 ∧ ¬T2), and vice versa.

To help you in your efforts, we have provided on the course web page an interpreter for the polymorphic
lambda calculus. See the file test.poly for example syntax.

(a) (5 pts.) As mentioned in class, types whose formulae contain negation can be generated by using
continuations, but our target language has no continuations. Give a formula that is equivalent
to A ∧B but contains only logical operators for which there is a target-sum language equivalent.
Give a formula that is equivalent to A ∨ B but contains only logical operators for which there is
a target-product language equivalent.

(b) (5 pts.) We translate a source language type τ into a target-sum language type T +[[τ]] and into a
target-product language type T ∗[[τ]]. What logically equivalent target-sum language type should
T +[[·]] map τ1 ∗ τ2 to? What logically equivalent target-product language type should T ∗[[·]] map
τ1 + τ2 to?

(c) (10 pts.) In this part, you will define the important parts of a translation function E+[[·]], which
when applied to a source language type judgment ∆; Γ ` e : σ, produces a provable target-
sum language type judgment ∆′; Γ′ ` e′ : T +[[σ]]. It will be useful to have a semantic function
G+[[·]] that simply maps all the types of variables in Γ into the target language: G+[[∅]] = ∅,
G+[[Γ, x :σ]] = G+[[Γ]], x :T [[σ]].

Complete the translation of type checking rules for 〈e1, e2〉, left e, and right e into type checking
rules for target-sum languages. You will need to introduce new variables; add any premises needed
to control the selection of variable names.

(d) (10 pts.) Similarly, you can define E∗[[·]] (and G∗[[·]]) to translate a source language type judgment
into a target-product language type judgment.
Complete the translation of type checking rules for inlτ1+τ2e, inrτ1+τ2e, and case e0 of e1|e2 into
type checking rules for target-product languages.

(e) (10 pts.) Show that the expressions that are your translations in 3(c) and 3(d) are well-formed.
For each translated expression, give a type derivation in which the tops of the proof tree are either
axioms or are judgments that you are assured of having because the source-language expression
is well-formed.

4

