
CS611 Homework 4 DUE: October 29, 2001

What to turn in

Turn in the assignment at the beginning of class on the due date.

1. Continuity (40 pts)

(a) (Winskel 8.6) Exactly what functions from a pointed CPO to a discrete CPO are continuous?

(b) Show that the strict function,

strict = λf ∈ Σ → Σ⊥. λσ̄ ∈ Σ⊥. if σ̄ = ⊥ then ⊥ else f(σ̄)

is continuous.

(c) (from Winskel 8.12) Operations on a set S can be extended to the lifted domain S⊥. For example,
the or-operator ∨ : B × B → B can be extended to ∨⊥ : B⊥ × B⊥ → B⊥ by taking

x1 ∨⊥ x2 = (let b1 = x1, b2 = x2 in �b1 ∨ b2�)
This extension is strict since if either x1 or x2 is ⊥, then so is x1 ∨⊥ x2. This extension is not
the only possible extension of ∨, however. Describe in the form of “truth tables” all continuous
extensions of the boolean or-operator ∨. Show that the functions you define are continuous.

(d) A set S is isomorphic to another set S′ if there is a one-to-one function mapping from S to S′.
Similarly, a domain D is isomorphic to a domain D′ if there is a continuous one-to-one function
mapping D to D′. That is, the two domains must have not only corresponding elements but also
corresponding structure. Because the function is continuous, it preserves not only ordering but
also suprema.

i. Show that the domains D → E and {f ∈ D⊥ → E⊥ | f(⊥) = ⊥} (both ordered pointwise)
are isomorphic for any CPO’s D and E.

ii. Show that the domains D×E → F and D → E → F are isomorphic for any CPO’s D, E, F.

2. Approximation (20 pts)

An element x of a CPO approximates another element y, written x � y, if all chains zn whose LUB is
at least y contain an element that is at least x:

y �
⊔

n∈ω

zn =⇒ ∃n ∈ ω.x � zn

An element of a CPO is finite (or compact) if it approximates itself.

(a) Show that x � y =⇒ x � y.

What are the finite elements of these domains?

(b) natural numbers ω with discrete ordering

(c) ω ∪ {∞} with ≤ ordering (∀n.n ≤ ∞)

(d) Z → Z with pointwise ordering

(e) Z → Z⊥ with pointwise ordering

3. Lazy uF and letrec (40 pts)

In class (Friday) we defined a denotational semantics for the uF language, which has eager evaluation.
We could as easily have written a denotational semantics for a lazy version of uF, in which let expres-
sions, arguments to functions, and the two cells of pairs are all evaluated lazily. For example, given a
divergent expression Ω, the following expressions should evaluate to 0 rather than diverging:

1



• left 〈0,Ω〉
• (λ x 0) Ω

• let x = Ω in 0

In this problem you will write the denotational semantics for lazy uF in either direct style or in
continuation-passing style (your choice). Justify any language design decisions that you have to make
along the way.

(a) Write the domain equations for lazy uF.

(b) Define a semantic function C[[·]] that gives the meaning of a lazy uF expression.

uF has the simple recursion construct rec that permits construction of recursive functions. Many
languages allow the construction of mutually recursive functions, like the REC language that we defined
in class. In a lazy language, there is the potential to define recursive data structures as well. Suppose
we want both of these capabilities in lazy uF, and extend the language with a corresponding letrec
expression:

e ::= . . . | letrec x1 = e1, . . . , xn = en in e0

Because arbitrary expressions can appear in a letrec expression (unlike in ML), we can use letrec to
define recursive data structures, such as infinite lists of the natural numbers. For example, the following
evaluates to 4:

letrec
inclist = (λ x 〈(left x) + 1, inclist (right x)〉),
nats = 〈0, inclist nats〉
evens = 〈0, inclist odds〉,
odds = inclist evens,

in
left (right (right evens))

The same approach can be used to produce other interesting infinite lists, such as a lazily-evaluated
list of the primes.

(c) Define C[[letrec x1 = e1, . . . , xn = en in e0]]. Justify the correctness of any use of fix that appears
in your definition.

(d) Show that your language semantics gives the intended meaning for the expression letrec ones=〈1,
ones〉 in ones.

(e) What goes wrong if we try to add this expression form to standard (eager) uF?

2


