What to turn in

Turn in the assignment at the beginning of class on the due date.

1. Continuity (40 pts)
(a) (Winskel 8.6) Exactly what functions from a pointed CPO to a discrete CPO are continuous?
(b) Show that the strict function,

$$
\text { strict }=\lambda f \in \Sigma \rightarrow \Sigma_{\perp} . \lambda \bar{\sigma} \in \Sigma_{\perp} \text {. if } \bar{\sigma}=\perp \text { then } \perp \text { else } f(\bar{\sigma})
$$

is continuous.
(c) (from Winskel 8.12) Operations on a set S can be extended to the lifted domain S_{\perp}. For example, the or-operator $\vee: \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{B}$ can be extended to $\vee_{\perp}: \mathbb{B}_{\perp} \times \mathbb{B}_{\perp} \rightarrow \mathbb{B}_{\perp}$ by taking

$$
x_{1} \vee \perp x_{2}=\left(\text { let } b_{1}=x_{1}, b_{2}=x_{2} \text { in }\left\lfloor b_{1} \vee b_{2}\right\rfloor\right)
$$

This extension is strict since if either x_{1} or x_{2} is \perp, then so is $x_{1} \vee_{\perp} x_{2}$. This extension is not the only possible extension of \vee, however. Describe in the form of "truth tables" all continuous extensions of the boolean or-operator \vee. Show that the functions you define are continuous.
(d) A set S is isomorphic to another set S^{\prime} if there is a one-to-one function mapping from S to S^{\prime}. Similarly, a domain D is isomorphic to a domain D^{\prime} if there is a continuous one-to-one function mapping D to D^{\prime}. That is, the two domains must have not only corresponding elements but also corresponding structure. Because the function is continuous, it preserves not only ordering but also suprema.
i. Show that the domains $D \rightarrow E$ and $\left\{f \in D_{\perp} \rightarrow E_{\perp} \mid f(\perp)=\perp\right\}$ (both ordered pointwise) are isomorphic for any CPO's D and E.
ii. Show that the domains $D \times E \rightarrow F$ and $D \rightarrow E \rightarrow F$ are isomorphic for any CPO's D, E, F.

2. Approximation (20 pts)

An element x of a CPO approximates another element y, written $x \ll y$, if all chains z_{n} whose LUB is at least y contain an element that is at least x :

$$
y \sqsubseteq \bigsqcup_{n \in \omega} z_{n} \Longrightarrow \exists n \in \omega \cdot x \sqsubseteq z_{n}
$$

An element of a CPO is finite (or compact) if it approximates itself.
(a) Show that $x \ll y \Longrightarrow x \sqsubseteq y$.

What are the finite elements of these domains?
(b) natural numbers ω with discrete ordering
(c) $\omega \cup\{\infty\}$ with \leq ordering $(\forall n . n \leq \infty)$
(d) $\mathbb{Z} \rightarrow \mathbb{Z}$ with pointwise ordering
(e) $\mathbb{Z} \rightarrow \mathbb{Z}_{\perp}$ with pointwise ordering
3. Lazy uF and letrec (40 pts)

In class (Friday) we defined a denotational semantics for the uF language, which has eager evaluation. We could as easily have written a denotational semantics for a lazy version of $u F$, in which let expressions, arguments to functions, and the two cells of pairs are all evaluated lazily. For example, given a divergent expression Ω, the following expressions should evaluate to 0 rather than diverging:

- left $\langle 0, \Omega\rangle$
- $(\lambda \times 0) \Omega$
- let $x=\Omega$ in 0

In this problem you will write the denotational semantics for lazy uF in either direct style or in continuation-passing style (your choice). Justify any language design decisions that you have to make along the way.
(a) Write the domain equations for lazy $u F$.
(b) Define a semantic function $\mathcal{C} \llbracket \rrbracket$ that gives the meaning of a lazy $u F$ expression.
uF has the simple recursion construct rec that permits construction of recursive functions. Many languages allow the construction of mutually recursive functions, like the REC language that we defined in class. In a lazy language, there is the potential to define recursive data structures as well. Suppose we want both of these capabilities in lazy $u F$, and extend the language with a corresponding letrec expression:

$$
e::=\ldots \mid \text { letrec } x_{1}=e_{1}, \ldots, x_{n}=e_{n} \text { in } e_{0}
$$

Because arbitrary expressions can appear in a letrec expression (unlike in ML), we can use letrec to define recursive data structures, such as infinite lists of the natural numbers. For example, the following evaluates to 4:

```
letrec
    inclist \(=(\lambda \times\langle(\) left \(x)+1\), inclist \((\) right \(x)\rangle)\),
    nats \(=\langle 0\), inclist nats \(\rangle\)
    evens \(=\langle 0\), inclist odds \(\rangle\),
    odds \(=\) inclist evens,
in
    left (right (right evens))
```

The same approach can be used to produce other interesting infinite lists, such as a lazily-evaluated list of the primes.
(c) Define $\mathcal{C} \llbracket$ letrec $x_{1}=e_{1}, \ldots, x_{n}=e_{n}$ in $e_{0} \rrbracket$. Justify the correctness of any use of fix that appears in your definition.
(d) Show that your language semantics gives the intended meaning for the expression letrec ones $=\langle 1$, ones \rangle in ones.
(e) What goes wrong if we try to add this expression form to standard (eager) uF?

