
CS611 Homework 3 DUE: October 19, 2001

What to turn in

Turn in the written parts of the assignment during class on the due date. For the programming part, you

should mail your version of the �le translate.ml to nystrom@cs.cornell.edu by 5pm on that day. The

short problems (4,5) will not be worth as much as the others.

1. Substitution Lemma

We de�ne the small step parallel reduction semantics for lambda expressions as follows:

x 7!p x

t1 7!p t3 t2 7!p t4

t1 t2 7!p t3 t4

t1 7!p t2

� x t1 7!p � x t2

t1 7!p t3 t2 7!p t4

(� x t1) t2 7!p t3 ft4=xg

Prove that (t1 7!p t2) ^ (t3 7!p t4)) t1ft3=xg 7!p t2ft4=xg.

2. Evaluation Contexts

We extend the call-by-value � calculus with a primitive exception mechanism as follows:

e ::= x j � x e j e1 e2 j raise j try e1 handle e2

The expression raise, encountered in either the operand or operator position of an application, raises

an exception and terminates the current evaluation of the expression. The exception will be bubbled

up until a try expression is reached. If e1 in the try expression raises an exception, we will start to

evaluate e2 in the exception handler in the next step.

raise is not a value in this language. For example, try ((� x 1) raise) handle 2 evaluates to 2 instead of

1, because ((� x 1) raise) evaluates to raise instead of 1.

Evaluation contexts C for this language can be de�ned as:

v ::= � x e

C ::= [] j C e j v C j try C handle e

A redex ra for this evaluation context can have the following forms:

ra ::= (� x e) v j try D handle e j try v handle e

Here,D is an expression that contains an \exposed" raise: a raise that is not hidden in an � abstraction

or a try expression. The formal de�nition of D is:

D ::= raise j D e j v D

1

Given these de�nitions, the possible reductions are as follows:

(� x e) v 7!a e fv=xg

try D handle e 7!a e

try v handle e 7!a v

And we have the usual rule for reductions in an appropriate context:

e 7!a e
0

C[e] 7!a C[e
0]

(a) Context Lemma

Show that 8e; if e is a closed term, then (e = v)_(e = D)_(9 unique C; unique ra; such that C[ra] =

e), where we de�ne C[t] as

[][t] = t (C e)[t] = C[t] e (v C)[t] = v C[t] (try C handle e)[t] = try C[t] handle e

In English, show that for each closed term e in this language, it is either a value, of the form D, or

that there is only one way to write down its evaluation context. This means that any expression

e can be evaluated deterministically until we get a value v or a term of the form D (which must

raise an exception).

(b) Equivalence of Evaluation Contexts

There is another way to de�ne evaluation contexts for this language. We can remove D and add

more possible redexes rb as follows:

v ::= � x e

C ::= [] j C e j v C j try C handle e

rb ::= (� x e) v j try raise handle e j try v handle e j raise e j v raise

The reductions for a redex rb are these:

(� x e) v 7!b e fv=xg

try raise handle e 7!b e

try v handle e 7!b v

raise e 7!b raise

v raise 7!b raise

Problem: show that all evaluations in the original semantics are also permitted in the more verbose

semantics: e 7!a e
0
) e 7!

�

b
e
0.

3. Iterators

Consider a binary tree de�ned by the Java class Tree:

class Tree {

Tree left;

Key here;

Tree right;

}

We'd like to de�ne an iterator that returns the elements in the tree in pre-order. The iterator might

be used like this:

2

TreeIter i = new TreeIter(tree);

for (Key k = i.next(); k != null; k = i.next()) {

// do something with k

}

It's actually quite awkward to implement TreeIter. We must explicitly save the state of the iteration

in a stack between calls to next(). For instance,

class TreeIter {

Stack stack;

TreeIter(Tree t) {

stack = new Stack();

stack.push(t);

}

Key next() {

while (! stack.empty()) {

Tree t = (Tree) stack.pop();

if (t.left == null && t.right == null) {

return t.key;

}

if (t.right != null) stack.push(t.right);

stack.push(new Tree(null, t.key, null));

if (t.left != null) stack.push(t.left);

}

return null;

}

}

Writing Java iterators for more complex data structures is even more diÆcult to get right. By contrast,

the language CLU (c. 1977) has a powerful iterator construct that allows iterators to be expressed

more elegantly. The iterator construct adds two expression forms: for x in ei do eb and yield e. The

idea is that a for expression evaluates the \iterator" ei. If a yield ev expression is encountered during

the evaluation of ei, the body of eb is evaluated in an environment where x is bound to the result of

the evaluation of ev. After evaluating eb, control is transferred back into ei at the point of the yield
and evaluation continues as though the yield had resulted in eb. A yield expression not in the scope of

any for expression should raise a runtime error. Note that the variable x is bound in eb but not in ei.

If Java had CLU-style iterators, the binary tree iterator above could be written simply:

elements() yields Key {

for k in left.elements() do { yield k };

yield key;

for k in right.elements() do { yield k }

}

And it could be used conveniently too:

for k in tree.elements() do {

// do something with k

}

3

Consider a version of uF augmented with for and yield expressions:

e ::= n j x j #t j #f j #u

j �x e j e0 e1 j let x = e0 in e1

j if e0 then e1 else e2

j for x in ei do eb j yield e

(a) Extend the contextual operational semantics for uF to include for and yield expressions.

(b) Give a translation of this language into standard uF in continuation-passing style.

4. Continuity

Consider the function

minall : (!? ! !?)! !? = �f : !? ! !? : min
y2!

f(y)

In this de�nition, ! denotes the whole numbers (0, 1, 2, . . .), and the function min gives the smallest

number in all of the f(y), or ? if f(y) = ? for some integer y. Show that this function is monotonic

but not continuous.

5. Dynamic vs. Static Scope

Consider the following uF program. What value does it have under dynamic scope? Under the

standard block-structured static scope? Explain briey (don't show the whole evaluation).

let f = �n�g1�g2 (
let x = n+10 in
let g = (�z x) in
if n==0 then (g #u) + (g1 #u) + (g2 #u)

else (f (n-1) g g1)
) in
(f 2 #u #u)

6. Implementation

Call-by-name evaluation often results in redundant computation. For instance,

let x = 3 + 2 in
let y = x+ 1 in

y + y

In this example, substituting 3 + 2 for x in the body of the let will cause 3 + 2 to be computed

twice. With call-by-value semantics x and y are computed only once, but a computation may diverge

(although not in this example) even if the result of the computation is not used. Since call-by-name

is ineÆcient, most lazy functional languages such as Haskell or Miranda implement call-by-need. Call-

by-need evaluation has the observational behavior of call-by-name (assuming expressions have no side

e�ects) but requires no more substitution steps than call-by-value evaluation. Call-by-need is often

implemented by overwriting an argument to an application with its value the �rst time it is evaluated,

thus avoiding the need to subsequent re-evaluation. In the above program, the �rst evaluation of y

will evaluate x + 1 and result in the value 6. Subsequent demands for the computation x + 1 will

immediately return 6.

In this problem, you will write a translator from a call-by-need Scheme-like language into a call-by-value

language.

The implementation �les for this question are found in the �le need.tar.gz, which is available from

the course web page. The archive contains an implementation of a interpreter for the call-by-need

4

source language (described below) as well as an interpreter for the call-by-value target language. You

can run the interpreters and your translation using the need command.

The syntax for the full source language is given by:

op ::= + j * j and j or

binop ::= - j = j <

unop ::= zero? j left j right

refop ::= (ref e) j (! e) j (:= e1 e2) j (seq e1 e2 : : : en)

e ::= x j n j true j false j (op e1 e2 : : : en) j (binop e1 e2) j (unop e) j refop j (if e0 e1 e2)

j (fn (x1 : : : xn) e) j (e1 e2 : : : en) j (let ((v1 e1) : : : (vn en)) e) j he1; e2i

In this syntax de�nition, x stands for variable identi�ers, n ranges over the integers and A1 : : : An

stands for one or more occurrences of syntactic objects of the form A. Lambda abstractions with

any number of arguments x1; : : : ; xn are written (fn (x1 : : : xn) e). Both user-de�ned functions and

primitive operations are applied to their arguments using pre�x notation, just as in the simple lambda

calculus. Thus (+ 3 4) evaluates to 7, and ((fn (x) (x)) 37) evaluates to 37

Arithmetic and boolean operators �rst evaluate their arguments and then perform the operation.

Subtraction (-) and the relational operators (= and <) expect exactly two integer arguments, while +,

*, and, and or expects at least two, but possibly more, arguments. The unary operators expect one

argument.

The operator zero? expects one argument and returns #t if it is an integer expression that evaluates

to 0 and #f if it is any other value.

The let expression binds variables to expressions ei that may be used in the body e. The binding of

vi is available in ej when j > i, as in the Scheme let* expression.

Pairs are enclosed in angle brackets (e.g., he1; e2i). Pairs are lazy, so h(+ 3 4),5i does not immediately

evaluate to h7,5i, and h
,
i is not a divergent program. The left and right operators return the left

and right components of a pair, respectively, forcing the evaluation of those components.

After compiling the interpreter using make or make.bat you should be able to load and run programs

using the command need. For this assignment, you will need to modify only the �le translate.ml.

Indeed, this is the only �le you should modify.

To simplify the AST somewhat, we desugar multi-argument functions into unary functions and we

multi-argument primitive operations into binary operations, arriving at a core source language:

binop ::= + j * j - j = j <

unop ::= zero? j left j right

refop ::= (ref e) j (! e) j (:= e1 e2) j (seq e1 e2)

e ::= x j n j true j false j (binop e1 e2) j (unop e) j refop j (if e0 e1 e2)

j (fn (x) e) j (e1 e2) j (let ((v1 e1)) e) j he1; e2i

The core source language is just the full source language without multi-argument functions and appli-

cations, without most boolean operations, and without list operations. Note that let only de�nes one

parameter.

Our target language has the same syntax except that refop expressions are not permitted. Expressions

in the target language are also evaluated call-by-value rather than call-by-name.

You should write a translator from the core source language to the target language. A few cases for

the translator we wrote are �lled in in the source �les for this problem, but you are free to do this

translation any way you wish (as long as it requires modifying only translate.ml). To help you to

determine whether your translation is correct, we have provided both a call-by-need interpreter and a

call-by-value interpreter. Both interpreters are invoked by running need from the command line.

There are many possible ways to do the translation, but one way we suggest is to do it in two

phases. In the �rst phase, translate the call-by-need language to call-by-value, but do not elim-

inate refop expressions. In the second stage, translate the call-by-value language with refs to a

5

call-by-value language without refs. The �rst phase of the translation should be performed by the

Translate.to call by value function. The second phase of the translation should be performed by

the Translate.remove refs function. If you implement both phases of the translation at once, both

phases should be performed in Translate.to call by value and remove refs should just be the

identity function.

(a) Write a program in the source language that evaluates to a di�erent result in call-by-value, call-

by-need, and call-by-name. Submit your program by email with your version of translate.ml.

You'll get extra credit if your program exposes bugs in other students' translations.

(b) Implement Translate.to call by value in translate.ml. This function should translate a

call-by-need input program into a call-by-value program that produces the same result. The most

straightforward way to perform this translation is to use refs as described above, but you are not

required to do so.

(c) Implement Translate.remove refs in translate.ml. This function should remove all Ref, Deref,
Assign, and Seq nodes from the AST. If your to call by value translation already removed these

nodes, remove refs should be the identity function.

6

