
CS611 Homework 2 DUE: 10/01/01

What to turn in

Turn in the assignment during class on the due date.

1. Proofs by induction (25 pts.)
Consider a version of IMP that has for loops instead of while loops. We redefine commands c as
follows:

c ::= skip | x := a | if b then c0 else c1 | c0; c1 | for x = a0 to a1 do c

Let us suppose that the large-step semantics are unchanged except that we substitute the following
for rules for the while rules:

〈a0, σ〉 ⇓ n0 〈a1, σ〉 ⇓ n1

〈for x = a0 to a1 do c, σ〉 ⇓ σ
where n0 > n1

〈a0, σ〉 ⇓ n0 〈a1, σ〉 ⇓ n1 〈for x = n0 to n1 do c, σ〉 ⇓ σ′

〈for x = a0 to a1 do c, σ〉 ⇓ σ′ where n0 ≤ n1

〈c; for x = n′
0 to n1 do c, σ[x �→ n0]〉 ⇓ σ′

〈for x = n0 to n1 do c, σ〉 ⇓ σ′ where n0 ≤ n1 ∧ n′
0 = n0 + 1

Informally, the bounds of the loop are computed once, at the beginning of the loop, and although the
loop index variable can be assigned within the loop, these assignments do not affect the value of the
variable at the beginning of the next loop iteration.

(a) Write a program in this language that, given an input number in the variable n, outputs the nth
prime number in the variable x.

(b) Define a series of programs P1, P2, P3, . . . such that the length of program Pn is polynomial in n
but the running times of the programs grow faster than any exponential in n.

(c) Despite the fact that we can write many useful programs in this language—it can compute the
primitive recursive functions—the language is not universal. Show that it is not universal by
demonstrating that all programs terminate. (Hint: Use well-founded induction, but make sure
you show your well-founded relation is indeed well-founded!)

2. Free and bound variables (10 pts.)
Identify the free and bound variables in each of the following expressions:

(a) (λ(x y z) z x y)

(b) (λ(x y) (λz (z y)) (λx (z x)))

(c) ((λ(x y) y) x)

We defined substitution into a lambda term using the following three rules:

(λx e0){e1/x} = (λx e0)
(λy e0){e1/x} = (λy e0{e1/x}) (where y �= x ∧ y �∈ FV[[e1]])
(λy e0){e1/x} = (λy′ e0{y′/y}{e1/x}) (where y′ �= x ∧ y′ �∈ FV[[e0]] ∧ y′ �∈ FV[[e1]])

(d) In these rules, we note a number of conjuncts in the side-conditions whose purpose is perhaps not
immediately apparent. Show by counterexample that each of the conjuncts above is independently
necessary.
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3. Fixed Point Combinator (10 pts.)
In class we have seen a fixed point operator Y, which has the property Yf = f(Yf). This is not the
only fixed point operator. Prove that the combinator B defined as the following is also a fixed pointer
operator.

A ≡ λ(a b c d e f g h i j k l m n o p q s t u v w x y z r) r(t h i s i s a f i x e d p o i n t c o m b i n a t o r)
B ≡ A A A A A A A A A A A A A A A A A A A A A A A A A A

4. Encodings (25 pts.)
We have seen in class one way to represent natural numbers in the λ-calculus. However, there are
many other ways to encode numbers in λ-calculus. Consider the following definitions:

TRUE ≡ λ(x y) x

FALSE ≡ λ(x y) y

0 ≡ λx x

n+ 1 ≡ λx (x FALSE) n

(a) Show how to write the DEC (decrement by one) operation for this number representation. Reduce
(DEC (DEC 2)) to its βη normal form, which should be the representation of 0, above.

(b) Show how to write a λ-term ZERO? that determines whether a number is zero or not. It should
return TRUE when the number is zero, and FALSE otherwise. Use the definitions of TRUE and
FALSE given above.

(c) Show how to write the ADD and MULT operations for this number representation.

5. The S and K Combinators (30 pts.)
Consider the following definitions of the S and K combinators:

S ≡ λ(x y z) ((x z) (y z))
K ≡ λ(x y) x

Any λ-calculus expression without free variables can be written using only applications of the S and
K combinators; thus, the λ-calculus can be universal with only three distinct identifier names, since
both combinators use no more than three identifiers.

(a) Show that the S and K combinators can be used to construct an expression with the same normal
form as the identity expression I ≡ λx x.

(b) Now, we will construct a translation from λ-calculus expressions to expressions containing only
applications of the S and K combinators. This translation will be defined in terms of two functions:
C[[e]], which converts an expression e into this form, and a function A[[x, e]], which abstracts the
variable x from the expression e. removing all uses of x within e.
The idea is that A[[x, e]] = λx e, in the sense that the two expressions have the same effect when
applied to any argument (they are extensionally equal). Using the function A, the function C can
be defined simply by structural induction:

C[[x]] = x

C[[e0 e1]] = (C[[e0]] C[[e1]])
C[[λx e]] = A[[x, C[[e]]]]

Because A is only applied to expressions produced by C, it needs to be defined only for expressions
that are identifiers and applications. For example, consider A[[x, x′]] where x′ �= x. We require
(A[[x, x′]]e) = (λx x′)e for any e, so we obtain the right effect with the following definition:

A[[x, x′]] = (K x′) (where x �= x′)

Define the remainder of the translation to the S and K combinators. Does this translation result
in the most compact equivalent expression using these combinators? Justify your answer.
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