Problem Set 4

October 19, 2014

1. Write the inductive proof that $\forall x, y. \exists z. \text{Add}(x, y, z)$. This proof will define an addition function as realizer. Compare it to the primitive recursive function $\text{add}(x, y)$.

Your proof will also apply to $\forall x, y. \exists z. \text{add}(x, y) = z$. How does the realizer compare to this function?

2. Ed Nelson does not believe that primitive recursive definition of $\text{exp}(x, y)$ defines a legitimate function. He does agree that that add and mult as defined recursively are legitimate. Can you think of any reason for his skepticism?

3. We can define the cost of a primitive recursive function as the number of successor applications necessary to produce the final value. What is the cost of add, mult, exp?

4. Prove the principle of course of values induction with base from standard induction.

5. The Least Number Principle is this theorem of Peano Arithmetic. Is this valid constructively? Explain.

$\exists x. A(x) \Rightarrow \exists y. (A(y) \& \forall z. (z < y \Rightarrow \neg A(z)))$.