1 Introduction

These notes summarize ideas discussed up to and including Lecture 14. This material is related to Chapter 6 of the textbook by Thompson. In particular the idea of extracting a program from a proof is examined. The ideas discussed here take us deeper into the issues behind the design of constructive type theories such as the CTT of Nuprl and CIC of Coq that we have started to explore.

One of the main themes we are examining is central to understanding modern formal methods. On one hand, we have examined how to define numbers using first-order logic axioms. We have noted that weak first-order theories such as Q allow many non-standard interpretations of the numbers. There is a deep theorem of classical logic, the Lowenheim-Skolem theorem, that tells us that first-order logic is not adequate to define the standard model of the natural numbers. We will not prove this result from logic, but we will continue to discuss it informally.

It is no longer the case that first-order logic is considered the standard language in which to write formal specifications, so this issue is less urgent than in the past. Modern approaches to specification use higher order logic, HOL, or type theory.

We have already explored the notion that constructive type theory is based on a computation system rather than on pure logic. This is a major change in approach, and it puts programming languages closer to the heart of formal methods as in Thompson’s textbook. We see this clearly in the short piece by Martin-Löf, and we will elaborate this theme as we go.
1.1 Overview

We already know that the very simple theory of numbers, Q, is too weak
to characterize the natural numbers. It is also too weak to specify common
numerical problems and prove that the specifications can be realized. We
noted in Lecture 11 that we need some form of induction that is not present
in Q. We continue this line of investigation here. We explore further the
connection between induction and primitive recursion. We will show that
the induction rule has intuitive computational content and is an instance
of primitive recursion with functions as inputs. Thompson does a good job
with this topic.

We will continue to explore Martin-Löf’s approach to defining the natural
numbers. As we mentioned previously, this will lead us to constructive
type theory in a very natural way. In that setting, we will see the richest
computational account of numbers available.

2 Heyting Arithmetic

The typical constructive axiomatization of a theory of natural numbers in-
cludes the numerical constants along with the successor, addition and mul-
tiplication functions axiomatized as in Q. In addition, the axiom scheme
of induction is included for any first-order numerical predicate \(P \) of type
\(\mathbb{N} \rightarrow \text{Prop} \). The induction rule is typically presented as follows.

Induction Principle: Given any predicate \(P : \mathbb{N} \rightarrow \text{Prop} \), we can
construct evidence for the following relation,

\[
P(0) \Rightarrow (\forall n : \mathbb{N}. (P(n) \Rightarrow P(S(n)))) \Rightarrow \forall n : \mathbb{N}. P(n).
\]

The intuitive reason what we know \(\forall x : \mathbb{N}. P(n) \) is that given any spe-
cific \(n \), we can find evidence for \(P(n) \) by starting with the evidence for \(P(0) \),
call it \(p_0 \), and applying the function \(f \) that takes any number \(i \) and evi-
dence \(p_i \) for \(P(i) \) and computes evidence \(f(i)(p_i) \) to produce evidence for
\(P(S(i)) \). We can do this repeatedly until we reach the number \(n \) and evi-
dence for \(P(n) \). For example, if \(n \) is \(S(S(0)) \), then we build the following
evidence chain: \(f(0)(p_0) \) is evidence for \(P(S(0)) \), and \(f(S(0))(f(0)(p_0)) \) is
evidence for \(P(S(S(0))) \), and \(f(S(S(0)))(f(S(0))(f(0)(p_0))) \) is evidence for
\(P(S(S(S(0)))) \).

The approach we are developing to reasoning about the natural numbers
is explained well in the textbook, *Type Theory and Functional Programming*,
especially in section 4.8 starting on page 100. Thompson writes the key
induction rule on page 101 using basically the idea sketched just above. He
stressed the connection to primitive recursion by introducing a primitive
recursive operator with a function input, \(\text{prim } n \ c \ f \) where \(\text{prim } 0 \ c \ f \)
reduces to \(c \) and \(\text{prim } S(n) \ c \ f \) reduces to \(f \ n \ (\text{prim } n \ c \ f) \). The type of
\(f \) is \(n : \mathbb{N} \rightarrow P(n) \rightarrow P(S(n)) \). This means that the \(\text{prim} \) operation takes a
function as input. Its type is

\[
n : \mathbb{N} \rightarrow c : P(0) \rightarrow (x : \mathbb{N} \rightarrow P(x) \rightarrow P(S(x))) \rightarrow P(n).
\]

This typing is similar to that used in Nuprl for the induction operator.
In the Nuprl case, induction is defined for the integers, \(\mathbb{Z} \). So we can do
induction going both up and down. The upward case can be seen as an
example of the realizer given just above and the realizer in Thompson.

The Nuprl realizer for induction: In the base case, the Nuprl induction
term \(\text{ind}(0; t_b; x, y.t_{up}) \) reduces to \(t_b \). This is the base case for induction.
This expression will have type \(P(0) \) for the numerical predicate \(P \).

In the induction case, \(\text{ind}(s(n); t_b; x, y.t_{up}) \) reduces to \(t_{up}(s(n))(\text{ind}(n; x, y.t_{up})) \).

The type of the induction operator \(\text{ind} \) is

\[
P(0) \rightarrow (u : \{i : \mathbb{N} | 0 < i \} \rightarrow P(u - 1) \rightarrow P(u)) \rightarrow (n : \mathbb{N} \rightarrow P(n)).
\]

On page 102, in discussing how induction is expressed in type theory,
Thompson says:”This rule is one of the highlights of type theory.” This judg-
ment reflects the insights of Martin-Löf in designing intuitionistic type the-
ory using insights about induction developed by Skolem, Robinson, Gödel,
Goodstein [2], Tait and others who explained induction in computational
terms and expressed the rules using type theory.

2.1 Primitive Recursive Functions of Higher Type

In Lectures 11 and 12 we examined primitive recursive functions whose
only inputs are numbers. To understand induction, it has been useful to
generalize our definition to include inputs that are themselves computable
functions. This investigation was undertaken by Gödel to provide a com-
putational interpretation of number theory. His system is called \(T \) in some
articles and is referred to as his Dialectica interpretation based on the name
of the journal in which his article was published. It is nicely summarized in
the book by Stenlund, *Combinators, \(\lambda

terms, and Proof Theory*, [4]. Tait
gave an elegant method for proving that these functions terminate [5]. This
work by Tait was another major influence on the development of modern
type theory.
It is an interesting exercise to extend Martin-Löf’s account of primitive recursion to this larger class of functions. In his notes posted for the course, one of the key insights is expressed after he has given a precise syntax for the language of primitive recursive functions, and he says:

"With this, the formulation of the syntax of the language of primitive recursive functions is complete. ... It remains for us to explain the meanings of the statements that can be derived by means of the formal rules (or, what amounts to the same, how they are understood) because understanding a language, even a formal one, is not merely to understand its rules as rules of symbol manipulation. Believing that is the mistake of formalism.”

The first challenge for understanding modern type theory is to understand these higher-order recursive functions. We see here that such an understanding is important even for arithmetic. An interesting course project would be to give a Martin-Löf style account of natural numbers that uses this notion of numerical function of higher type to explain induction.

The challenge of induction We have now established a strong connection between induction and primitive recursion. On the other hand, we have remarked that there is another way to grasp induction that does not carry the computational meaning, yet it can be used to justify properties of primitive recursion. Here is the example discussed in Lecture 12. It would be interesting to explore this idea further as a contrast to the computational interpretation.

Addition is a total function:
\[\forall x, y : \mathbb{N}. \exists z : \mathbb{N}. (\text{add}(x, y) = z). \]

The proof is by induction on \(y \). In the base case, \(y = 0 \) we see that \(z = x \). If we assume \(\exists z : \mathbb{N}. (\text{add}(x, y) = z) \), then as we saw in lecture it is possible to prove by induction \(\exists z : \mathbb{N}. (\text{add}(x, S(y)) = z) \).

In a way this defeats the reason Skolem used primitive recursive functions, on the other hand, it shows that induction provides an explanation for termination of the \(\text{add} \) function. In this use of induction, we don’t need the computational content. Essentially we are using induction as a way of type checking the primitive recursive function. When we come to studying constructive type theory, we will see the Nuprl uses induction as a way of proving that formulas are well formed and that functions are well typed. Proving that \(\lambda(x, y.\text{add}(x, y)) \) has type \(x : \mathbb{N} \to y : \mathbb{N} \to \mathbb{N} \) is done by induction on \(y \).

Exercises. In Lecture 12 we discussed some of the questions that will appear on Problem Set 4. One of them is to finish this proof and discuss...
its contribution to believing that the addition function is total. Note that
the argument applies equally well to all of the primitive recursive functions
discussed above. The problem set investigates the form of the induction
realizer for this simple proof.

Another topic we mentioned in lecture is that the definition of the ex-
ponential function is somewhat more complex than for addition and multi-
plication. Can you see this extra complexity. The Princeton mathematician
Edward Nelson believes that the exponential function should not be consid-
ered computable. Can you think of a reason for his opinion?

We will explore this idea indirectly in Problem Set 4.

3 Other Induction Principles

Another form of induction, called complete induction or course-of-values
induction, is more useful than standard induction and can be derived from
it. Here is one of the ways it is expressed.

Complete Induction-1 (Course-of-Values Induction):

\[
\forall x. (\forall y. (y < x \Rightarrow A(y)) \Rightarrow A(x)) \Rightarrow \forall x. A(x).
\]

Another form of this induction is a bit more intuitive, yet equivalent.

Complete Induction-Explicit-Base:

\[
A(0) \& \forall x. (\forall y. (y \leq x \Rightarrow A(y)) \Rightarrow A(x+1)) \Rightarrow \forall x. A(x).
\]

For the first form of complete induction, the base case, \(A(0)\) follows from
the fact that \(\forall y. (y < 0 \Rightarrow A(y)) \Rightarrow A(0)\) is required to hold (instantiating
\(x\) with 0), and since it is the case that \(\forall y : \mathbb{N}. (y < 0 \Rightarrow A(y))\), since there
are no such \(y\), it must be that \(A(0)\) holds. So we have the base case “by
default” so to speak.\(^1\)

To prove Complete Induction-Explicit-Base, we assume

\[
A(0) \& \forall x. (\forall y. (y \leq x \Rightarrow A(y)) \Rightarrow A(x+1))
\]

and then prove \(\forall x. \forall y. (y \leq x \Rightarrow A(y)) \Rightarrow A(x+1)\) by simple induction on \(x\).

From this, \(\forall x : \mathbb{N}. A(x)\) follows by taking \(y\) to be \(x\). That is a simple
sketch. It breaks the result into two small lemmas. The first one captures
the critical insight. We call it the Main Lemma.

\(^1\)The fact that we use *ex falso quodlibet* in the base case is a bit inelegant, so the form
with Base might be preferable.
Main Lemma:

\[\vdash A(0) \& \forall x. (\forall y. (y \leq x \Rightarrow A(y)) \Rightarrow A(x + 1)) \Rightarrow (\forall x. \forall y. (y \leq x \Rightarrow A(y))). \]

We immediately obtain this sequent:

\[hyp : (A(0) \& \forall x. (\forall y. (y \leq x \Rightarrow A(y)) \Rightarrow A(x + 1))) \vdash \forall x. \forall y. (y \leq x \Rightarrow A(y)) \]

We can decompose the hypothesis into:

\[a_0 : A(0), all : \forall x. (\forall y. (y \leq x \Rightarrow A(y)) \Rightarrow A(x + 1)), x : \mathbb{N} \]

\[\vdash \forall y. (y \leq x \Rightarrow A(y)) \text{ by } \lambda(x. \text{ind}(x; \ldots ; u, v. \ldots)) \]

\[\vdash \forall y. (y \leq 0 \Rightarrow A(y)) \text{ by } \lambda(y. \lambda(\text{le.} \ldots)) \]

\[y : \mathbb{N}, \text{le : y} \leq 0 \vdash A(y) \text{ by } \text{arith} \; y = 0 \]

and the subproof:

\[y : \mathbb{N}, \text{le : y} \leq 0 \vdash A(0) \text{ by } a_0 \]

Next, for the induction case, we assume the result for x and prove it for x+1.

\[a_0 : A(0), all : \forall x. (\forall y. (y \leq x \Rightarrow A(y))) \Rightarrow A(x + 1)), x, u : \mathbb{N}, v : \forall y. (y \leq x \Rightarrow A(y)) \]

\[\vdash \forall y. (y \leq x + 1 \Rightarrow A(y)) \text{ by } \lambda(y.\ldots) \]

\[y : \mathbb{N}, ll : y \leq x + 1 \vdash A(y) \text{ by } \forall(x, y) \]

The small lemma is simply this:

Small Lemma: \(\vdash (\forall x. \forall y. (y \leq x \Rightarrow A(y))) \Rightarrow \forall x. A(x). \)

This is very simple to prove since we have \(x \leq x \).

This method of proof is not as straightforward as the simpler examples we have seen in first-order logic. As we noticed in Lecture 14 in class, we cannot simply write down the theorem and start using the standard proof rules. That approach will not lead us to the organization where we single out \(\forall x. \forall y. (y \leq x \Rightarrow A(y)) \) as the proposition we need to prove by induction on \(x \).

This situation motivates a longer discussion of how real mathematics is done in a context of a library of previously given definitions and proved theorems. In the proof assistants such as Agda, Coq, and Nuprl, proofs can use results and definitions from a large and growing library. In due course we will discuss the rules needed to access the library. It turns out that these
rules are very subtle, and the study of them leads to deep ideas about the nature of names used to access elements of the library. This topic has led to the recent study of nominal logics. It turns out that Nuprl is a nominal type theory, and this is a deep and important fact. If there is time, we will discuss this topic further in the course.

The realizer is easier to understand if we use the subtyping notation where \(\mathbb{N}_x \) is the type \(\{ n : \mathbb{N} | n \leq x \} \). We can then give the type of complete induction as follows.

\[
A(0) \& \forall x : \mathbb{N}.((\forall y : \mathbb{N}_x.A(y)) \Rightarrow A(x + 1)) \Rightarrow \forall x : \mathbb{N}.A(x).
\]

If we let \(\text{all} : (\forall x : \mathbb{N}.((\forall y : \mathbb{N}_x.A(y)) \Rightarrow A(x + 1))) \), then we can see that \(\text{all}(x) \in (\forall y : \mathbb{N}_x.A(y)) \Rightarrow A(x + 1) \). Thus if \(g_x \in y : \mathbb{N}_x \rightarrow A(y) \), then \(\text{all}(x)(g_x) \in A(x + 1) \). Thus \(\text{all}(0)(g_0) \in A(1) \) and \(\text{all}(1)(g_1) \in A(2) \) and so forth.

We can prove complete induction from simple induction and conversely. On the other hand, the two principles have distinct realizers. We will see that complete induction can be used to build forms of fast induction. The main idea of complete induction is that in proving \(A(n + 1) \), we assume that we have evidence for all of \(A(0), A(1), \ldots, A(n) \), so we can use whatever of these values we need to provide evidence for \(A(n + 1) \). We know by standard (Peano) induction that using only \(A(n) \) is sufficient, but we might have a simpler argument for certain instances of \(A \) if we use other values as allowed by complete induction. This induction method is complete in the sense that we have the complete initial segment of values at our disposal for building evidence for \(A(n + 1) \).

4 Related Theorems

Sometimes the method of inductive proof is captured in a negative way, using the method of infinite descent.

Theorem of Infinite Descent:

\[
\forall x : \mathbb{N}.(A(x) \Rightarrow \exists y : \mathbb{N}.(y < x) \& A(y)) \Rightarrow \sim A(x).
\]

\[
\forall x : \mathbb{N}.(A(x) \Rightarrow \sim \exists y : \mathbb{N}.(y < x) \& A(y)) \Rightarrow \sim A(x).
\]

Here is another basic principle used to prove properties of the natural numbers. The first version is not a valid computational procedure, but it commonly found in mathematics texts.
Least Number Principle on Decidable Predicates:

\[\forall x. (A(x) \lor \neg A(x)) \Rightarrow (\exists x. A(x)) \Rightarrow \exists y. (A(y) \land \forall z : x < y \Rightarrow \neg A(z)). \]

We can imagine a simpler principle if we work in a sub-logic in which we do not keep track of all the evidence. This kind of sub-logic is called classical logic, and we will examine it more later in the course.

\textbf{Least Number Principle:}

\[\exists x : N. A(x) \Rightarrow \exists y : N. (A(y) \land \forall z : z < y \Rightarrow \neg A(z)). \]

There are many examples of using these principles to prove statements that can also be proved by induction. For example, one way properties of the natural numbers are proved is to say that if some property \(P(x) \) holds, then there is a least number for which it holds. This is used in some algebra books to prove statements like this.

\textbf{Example 1:} There is no integer between 0 and 1.

Suppose there were such a number. Then there will be a least such number, call it \(m \), satisfying \(0 < m < 1 \). Now multiply both sides by \(m \) to obtain \(0 < m^2 < m \). Thus, there is another integer in this set smaller than \(m \), contrary to our assumption.

This proof is almost \textit{verbatim} from a widely used algebra book. Although it appears to be a computational argument, it is not that without being careful about other details such as the fact that the order relation is decidable.

Here is another interesting example in the algebra of the integers, \(\mathbb{Z} \). The proof repeated below is again essentially \textit{verbatim} from a textbook on algebra.

\textbf{Example 2:}

The subset \(S \) of \(\mathbb{Z} \) which includes 1 and includes \(n + 1 \) whenever it includes \(n \), includes every positive integer. The proof in the algebra book says that it is enough show that the set of positive integers \(S' \) not included is empty. If it is not empty, then it would have a least element, say \(m \). But this \(m \) cannot be 1 by the definition, so \(m > 0 \), and thus \(m - 1 \) would be positive. But since \(m - 1 < m \), by the definition of \(m \), we know that \(m - 1 \) belongs to \(S \). But then \((m - 1) + 1 = m \) would be in \(S \), contradicting the definition of \(m \).

It is an interesting exercise to develop standard algebra using constructive methods. This has been done in great detail in Nuprl libraries that you can read on line. The integers are a good starting point for number theory and algebra because they have so many nice algebraic properties that have
been generalized to topics in abstract algebra such as the study of groups, rings, and fields. Most of this has been developed constructively [1, 3].

References

