Classic ML and EventML

During this lecture, we are going to learn about a programming language called **Classic ML**.

We will actually use a language called **EventML** (developed by the Nuprl team [CAB+86, Kre02, ABC+06]). EventML is based on Classic ML and a logic called the Logic of Events [Bic09, BC08, BCG11].

We will focus on the Classic ML part of EventML.

Classic ML an EventML

Where does ML come from?

ML was originally designed, as part of a proof system called LCF (Logic for Computable Functions), to perform proofs within **PP\(\lambda\)** (Polymorphic Predicate \(\lambda\)-calculus), a formal logical system [GMM+78, GMW79].

By the way, what does ML mean? It means **Meta Language** because of the way it was used in LCF.

We refer to this original version of ML as Classic ML.

Many modern programming languages are based on Classic ML: SML (Standard ML), OCaml (object-oriented programming language), F# (a Microsoft product)... Nowadays ML is often used to refer to the collection of these programming languages.
Where is ML used?

- F# is a Microsoft product used, e.g., in the .NET framework.
- OCaml is developed by the INRIA. It has inspired F#.
 The Coq theorem prover is written in OCaml. It has been used in the implementation of Ensemble [Hay98, BCH+00]. It is also used by companies.
- SML has formally defined static and dynamic semantics.
 The HOL theorem prover is written in SML. It is nowadays mainly used for teaching and research.

What is Classic ML (or just ML for short)?

ML is a strongly typed higher-order impure functional programming language.

What does it mean?

(Nowadays, ML often refers to a family of languages such as Classic ML, SML, Caml, F#...)

What is ML?

Higher-order.

Functions can do nothing (we will come back to that one):
\[
\lambda x. x
\]

Functions can take numerical arguments:
\[
\lambda x. x + 1
\]

let plus_three \(x = x + 3 \);

Functions can take Boolean arguments:
\[
\lambda a. \lambda b. a \text{ or } b
\]

What is ML?

Higher-order.

Functions can also take other functions as arguments.

Function application:
\[
\text{let app = } \lambda f. \lambda x. (f x)\;
\]

Function composition:
\[
\text{let comp g h = } \lambda x. (g (h x)) \;
\]

Note that, e.g., app can be seen as a function that takes a function \(f \) as input and outputs a function \(\lambda x. (f x) \).
What is ML?

Higher-order.

BTW, a function of the form \(\lambda x. e \) (where \(e \) is an expression) is called a \(\lambda \)-expression.

The terms of the forms \(x \) (a variable), \((e_1 e_2) \) (an application), and \(\lambda x. e \) (a \(\lambda \)-expression) are the terms of the \(\lambda \)-calculus [Chu32, Bar84].

In 1932, Church [Chu32] introduced a system (that led to the \(\lambda \)-calculus we know) for “the foundation of formal logic”, which was a formal system for logic and functions.

What is ML?

Impure and functional.

Functional. Functions are first-class objects: functions can build functions, take functions as arguments, return functions...

Impure. Expressions can have side-effects: references, exceptions.

(We are only going to consider the pure part of ML.)

Other functional(-like) programming language: Haskell (pure), SML (impure), F# (impure)...

What is ML?

Strongly typed.

What is a type?

A type bundles together “objects” (syntactic forms) sharing a same semantics.

(Types started to be used in formal systems, providing foundations for Mathematics, in the early 1900s to avoid paradoxes (Russell [Rus08]).)

A type system (typing rules) dictates what it means for a program to have a type (to have a static semantics).

What are types good for?

Types are good, e.g., for checking the well-defined behavior of programs (e.g., by restricting the applications of certain functions – see below).

What is ML?

Strongly typed.

What else?

Flexibility. One of the best things about ML is that it has almost full type inference (type annotations are sometimes required). Each ML implementation has a type inferencer that, given a semantically correct program, finds a type.

This frees the programmer from explicitly writing down types: if a program has a type, the type inferencer will find one.

Given a semantically correct program, the inferred type provides a static semantics of the program.

Consider \(\lambda x. x + 2. \) 2 is an integer. + takes two integers and returns an integer. This means that x is constrained to be an integer. \(\lambda x. x + 2 \) is then a function that takes an integer and returns an integer.
What is ML?

Strongly typed.

Can type inferencers infer more than one type? Is each type as good as the others?

In ML it is typical that a program can have several types. The more general the inferred types are the more flexibility the programmer has (we will come back to that once we have learned about polymorphism).

(ML’s type system has principal type but not principal typing [Wel02] (a typing is a pair type environment/type).)

ML types

Integer. For example, 12 + 3 has type Int.

Boolean. For example, !true has type Bool (! stands for the Boolean negation).

List. For example, [1;2;3] has type Int List.

Function type. For example, \(\text{let } \text{plus3 } x = x + 3 ;; \) has type Int → Int.

Product type. For example, (true , 3) has type Bool * Int.

Disjoint union type. For example, \(\text{inl} (1 + 5) \) has type Int + Int.

What is ML?

What does type check then?

one can apply our plus_three function to integers:

\[
\begin{align*}
\text{let } &\text{plus_three } x = x + 3 ;; \\
\text{let } &\text{fu } = \text{plus_three } 6 ;;
\end{align*}
\]

One can test whether two integers are equal:

\[
\begin{align*}
\text{let } &i1 = 11 ;; \\
\text{let } &i2 = 22 ;; \\
\text{let } &\text{is_eq } = (i1 = i2) ;;
\end{align*}
\]
Polymorphism

We claimed that \(\text{inl}(1 + 5) \) has type \(\text{Int} + \text{Int} \). But it can also have type \(\text{Int} + \text{Bool}, \text{Int} + \text{Int List}, \ldots \)

For all type \(T \), \(\text{inl}(1 + 5) \) has type \(\text{Int} + T \). This can be represented with a polymorphic type: \(\text{Int} + 'a \), where \('a \) is called a type variable, meaning that it can be any type.

Let us consider a simpler example: \(\text{let id x = x}; \)

What's its type?

The action id performs does not depend on its argument's type. It can be applied to an integer, a Boolean, a function, \ldots It always returns its argument. id's type cannot be uniquely determined. To automatically assign a (monomorphic type) to id one would have to make a non-deterministic choice. Instead, we assign to id the polymorphic type: \('a \rightarrow 'a \).

Formally, this form of polymorphism is expressed using the \(\forall \) quantification.

This form of polymorphism is sometimes called infinitary parametric polymorphism \([\text{Str00, CW85}]\) and \(\forall \) types are called type schemes \((\text{see, e.g., system F} [\text{Gir71, Gir72}]\)).

Polymorphism complicates type inference but does not make it impossible.

Polymorphism allows one to express that a single program can have more than one meaning. Using the \(\forall \) quantification, one can express that a single program has an infinite number of meaning, i.e., can be used in an infinite number of ways.

The following function \(\text{null} \) has type \('a \text{ List} \rightarrow \text{Bool} \):

\[
\text{let \text{null lst} = case lst of [] \Rightarrow true of x . x \cdot x s \Rightarrow false };\]

let declarations allow one to define polymorphic functions while lambda expression do not. For example, the following piece of code is typable:

\[
\text{let x = (\ x . x) in (x 1 , x true)}
\]

However, the following piece of code is not typable:

\[
(\ x . (x 1 , x true)) (\ x . x)
\]

In the first example, the two last \(x \)'s stand for the identity function for two different types. In the second example, the two bound \(x \)'s in \(\text{x . (x 1 , x true)} \) have to be the same function.
Recursion

Another important feature of ML (and functional languages in general) is **recursion**

Recursion allows functions to call themselves.

Recursion accomplishes what "while" loops accomplish in imperative languages but in a functional way: functions call functions.

For example, to compute the length of a list, one wants to iterate through the list to count how many elements are in the list. The following function computes the length of a list:

```ml
let rec length lst =
  case lst of [] => 0
         | x . xs => 1 + length xs;;
```

Recursion

Another example: the factorial.

The "while" solution:

```ml
f := 1; i := 1;
while i <= x do
  f := i * f;;
i := i + 1;;
```

The recursive solution:

```ml
let f x = if x <= 1
            then 1
            else x * f (x - 1);;
```

Typing rules

Let us consider the following expression language (sometimes referred to as core ML):

- \(v \in \text{Var} \) (a countably infinite set of variables)
- \(\text{exp} \in \text{Exp} ::= v | \text{exp}_1 \text{exp}_2 | \backslash v.\text{exp} \mid \text{let } v = \text{exp}_1 \text{ in } \text{exp}_2 \)

Let us consider the following type language:

- \(a \in \text{TyVar} \) (a countably infinite set of type variables)
- \(\tau \in \text{ITy} ::= a | \tau_1 \to \tau_2 \)
- \(\sigma \in \text{ITyScheme} ::= \forall \{ a_1, \ldots, a_n \}.\tau \)

Let environments (metavariable \(\Gamma \)) be partial functions from program variables to type schemes. We write environments as follows:

- \(\{ v_1 \mapsto \sigma_1, \ldots, v_n \mapsto \sigma_n \} \)
- We sometimes write \(a \mapsto \tau \) for \(a \mapsto \forall \emptyset.\tau \).
Typing rules

the function \(fv\) computes the set of free type variables in a type or in a type environment.

We define the domain of an environment as follows:
\[
\text{dom}\{v_1 \mapsto \sigma_1, \ldots, v_n \mapsto \sigma_n\} = \{a_1, \ldots, a_n\}.
\]

Let substitutions (metavariable \(sub\)) be partial functions from type variables to types. We write substitutions as follows:
\[
\{a_1 \mapsto \tau_1, \ldots, a_n \mapsto \tau_n\}.
\]

We write substitution in a type as follows: \(\tau[\text{sub}]\).

Typing rules

(A variant of Damas and Milner’s type system, sometimes referred to as the Hindley-Milner type system and therefore often called DM or HM.)

\[
\tau \prec \Gamma(\text{vid})
\]

\[
v : (\Gamma, \tau)
\]

exp\(_1\) : \((\Gamma, \tau_1 \rightarrow \tau_2)\)

exp\(_2\) : \((\Gamma, \tau_1)\)

\[\frac{\text{exp}_1 \text{ exp}_2 : (\Gamma, \tau_2)}{\text{exp} : (\Gamma + \{v \mapsto \tau\}, \tau')}\]

\[\frac{\text{exp} : (\Gamma, \tau) \quad \text{exp}_2 : (\Gamma + \{v \mapsto \forall (fv(\tau) \setminus fv(\Gamma)), \tau\}', \tau')}{\text{let } v = \text{exp}_1 \text{ in } \text{exp}_2 : (\Gamma, \tau')}\]

Typing rules

Let the instantiation of a type scheme be defined as follows:
\[
\tau \prec \forall\{a_1, \ldots, a_n\}. \tau'
\]

\[
\iff \exists \tau_1, \ldots, \tau_n. (\tau = \tau'[\{a_i \mapsto \tau_i | i \in \{1, \ldots, n\}]])
\]

We also define a function to “merge” environments:
\[
\Gamma_1 + \Gamma_2 = \{a \mapsto \tau | \Gamma_2(a) = \tau \text{ or } (\Gamma_1(a) = \tau \text{ and } a \not\in \text{dom}(\Gamma_2))\}
\]

For example:

Let \(\Gamma = \{f \mapsto (a_1 \rightarrow a_2), g \mapsto (a_2 \rightarrow a_3), v \mapsto a_1\}\).

\[
\begin{align*}
\text{exp}_1 : (\Gamma, a_1 \rightarrow a_2) & \quad \text{exp}_2 : (\Gamma, a_2 \rightarrow a_3) \\
\text{let } f = \text{exp}_1 \text{ in exp}_2 : (\Gamma, a_1 \rightarrow a_3)
\end{align*}
\]

\[
\begin{align*}
f : (\Gamma, a_1 \rightarrow a_2) & \quad v : (\Gamma, a_1) \\
g : (\Gamma, a_2 \rightarrow a_3) & \quad f v : (\Gamma, a_2) \\
\text{let } g = \text{exp}_2 \text{ in } \text{let } f = \text{exp}_1 \text{ in } (\Gamma, a_1 \rightarrow a_3)
\end{align*}
\]
Typing rules

For example:

Let $\Gamma = \{id \mapsto \forall\{a\}. a \to a\}$.

Let $\tau = a_1 \to a_1$

\[
\begin{align*}
\text{id} : \langle \{id \mapsto a\}, a \rangle \\
\text{id} : \langle \Gamma, \tau \to \tau \rangle \\
\text{id} : \langle \Gamma, \tau \rangle \\
\text{id}.\text{id} : \langle \emptyset, a \to a \rangle \\
\text{id} \text{id} : \langle \emptyset, \tau \rangle \\
\text{let} \text{id} = \text{id}.\text{id} \text{ in } \text{id} \text{id} : \langle \emptyset, \tau \rangle
\end{align*}
\]

Type inference

Type inference vs. type checking. Let S be a type system:

- Type checking: given a (closed) expression exp and a type τ, a type checker checks that exp has type τ w.r.t. S.
- Type inference: given a (closed) expression exp, a type inferencer infers a type τ such that exp has type τ w.r.t. S, or fails if no such type exists.

Classic ML has **decidable** type inference: there exists an algorithm that given an expression exp, infers a type for exp which is valid w.r.t. the static semantics of Classic ML.

Classic ML seats between the simply typed λ-calculus [Bar92] (no polymorphism) and system F [Gir71, Gir72] (undecidable type inference).

Type inference

Type inference for Classic ML is exponential in theory. Many algorithms are efficient in practice (quasi-linear time under some assumptions).

Milner [Mil78] proposed a type inference algorithm, called the W algorithm, for an extension of core ML and proved it sound.

Damas (Milner’s student) and Milner [DM82] later proved the completeness of W.

Type inference

The W algorithm takes two inputs: a type environment Γ and an expression exp; and returns two outputs: a type substitution s and a type τ; such that exp has type τ in the environment $\Gamma[s]$ w.r.t. the type system presented above.

W is defined by induction on the structure of its expression parameter.
Type Inference

Remark 1: These inference algorithms use **first-order unification** [MM82, BN98].

Given an application \(exp_1 \ exp_2\), \(W\) produces, among other things, \(\tau_1\) a type for \(exp_1\), and \(\tau_2\) a type for \(exp_2\). A unification algorithm is then used to unify \(\tau_1\) and \(\tau_2 \rightarrow a\) where \(a\) is a "fresh" type variable (meaning that \(\tau_1\) has to be a function that takes an argument of type \(\tau_2\)).

Remark 2: Many algorithms have been designed since the \(W\). In some algorithms constraint generation and unification interleave [Mil78, DM82, LY98, McA99, Yan00], in others the constraint generation and constraint solving phases are separated [OSW99, Pot05, PR05].

Example:

\[
\text{let } \text{plus1 } x = x + 1 \text{ in plus1 3}
\]

- \(+\) is a function that takes two \(\text{Ints}\) and returns an \(\text{Int}\).
- \(1\) and \(x\) are constrained to be \(\text{Ints}\).
- \(\text{plus1}\) is constrained to be a function that takes an \(\text{Int}\) and returns an \(\text{Int}\).
- \(\text{plus1 3}\) is an \(\text{Int}\).
- Therefore the whole expression is an \(\text{Int}\).

Remark 3: EventML’s inferencer is constraint based (second category).

Example:

\[
\text{let } \text{app f x = f x in app (}\backslash x.x + 1\text{) 3}
\]

- If \(x\) has type \('a\) then \(f\) is constrained to have type \('a \rightarrow 'b\).
- \(\text{app}\) has polymorphic type \('a \rightarrow 'b\) \(\rightarrow 'a \rightarrow 'b\).
- \(+\) is a function that takes two \(\text{Ints}\) and returns an \(\text{Int}\).
- \(1\) and \(x\) are constrained to be \(\text{Ints}\).
- The function \(\backslash x.x + 1\) is constrained to have type \(\text{Int} \rightarrow \text{Int}\) and \(3\) is an \(\text{Int}\).
- An instance of \(\text{app}\)'s type is \((\text{Int} \rightarrow \text{Int}) \rightarrow \text{Int} \rightarrow \text{Int}\), where both \('a\) and \('b\) are instantiated to \(\text{Int}\). This is the type of \(\text{app}\)'s second occurrence.
- Therefore the whole expression is an \(\text{Int}\).

Example:

\[
\text{let } \text{id x = x in id id}
\]

- \(\text{id}\) has polymorphic type \('a \rightarrow 'a\). Each instance of \(\text{id}\)'s type is a functional type.
- \(\text{id}\)'s first bound occurrence is a function that takes a function as parameter.
- Therefore, \(\text{id}\)'s first bound occurrence’s type is an instance of \('a \rightarrow 'a\) such that \('a\) is substituted by a functional type.
- That functional type has to be an instance of \('a \rightarrow 'a\).
- For example, we can assign \('b \rightarrow 'b\) \(\rightarrow ('b \rightarrow 'b)\) to \(\text{id}\)'s first bound occurrence, and \('b \rightarrow 'b\) to \(\text{id}\)'s second bound occurrence.
- Therefore, the whole expression has type \('b \rightarrow 'b\).
Type inference

Example:

```ml
let quot_and_rem x y =
  let rec aux q r =
    if r < y then (q, r)
    else aux (q + 1) (r - y)
  in aux 0 x ;;
```

Because + and − both take Ints and return Ints, q, r, and y are constrained to be Ints.

aux’s first bound occurrence is constrained to be a function that takes two Int’s and returns a pair of Int’s
(aux has type Int → Int → (Int * Int)).

Because aux is applied to 0 and x in the last line, x is constrained to be an Int.

quot_and_rem has type Int → Int → (Int * Int).

References I

- Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz, Lori Lorigo, and E. Moran.
 Innovations in computational type theory using nuprl.
- Mark P. Barendregt.
 The Lambda Calculus: Its Syntax and Semantics.
- Mark P. Barendregt.
 Lambda calculus with types.
- Mark Bickford and Robert L. Constable.
 Formal foundations of computer security.
- Mark Bickford, Robert Constable, and David Guaspare.
 Generating event logics with higher-order processes as realizers.
- Ken Birman, Robert Constable, Mark Hayden, Jason Hickey, Christoph Kreitz, Robbert van Renesse, Ohad Rivlin, and Werner Vogels.
 The Horus and Ensemble projects: Accomplishments and limitations.
- Jean-Yves Girard.
 Interpretation Fonctionnelle et Élimination des Coupsures de l’Arithmétique d’Ordre Supérieur.
 A metalanguage for interactive proof in LCF.
- Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth.
 Edinburgh LCF: A Mechanised Logic of Computation, volume 78 of *Lecture Notes in Computer Science*.
 Springer-Verlag, 1979.
- Mark Hayden.
 The Ensemble System.
- Christoph Kreitz.
- Generating event logics with higher-order processes as realizers.
- Carla F. Moraga, Sarah Joiner, and Martin Rinard.
 A metalanguage for interactive proof in LCF.

References II

- Mark Bickford.
 Component specification using event classes.
- Franz Baader and Tobias Nipkow.
 Term rewriting and all that.
 Implementing mathematics with the Nuprl proof development system.
- Alonzo Church.
 A set of postulates for the foundations of logic.
- Luca Cardelli and Peter Wegner.
 On understanding types, data abstraction, and polymorphism.
- Luis Damas and Robin Milner.
 Principal type-schemes for functional programs.
 In *POPL ’82*, pages 207–212, New York, NY, USA, 1982. ACM.

References III

- Christoph Kreitz.
- Oukseh Lee and Kwangkeun Yi.
 Generating event logics with higher-order processes as realizers.
- Generating event logics with higher-order processes as realizers.
- Jean-Yves Girard.
 Interprétation Fonctionnelle et Élimination des Coupsures de l’Arithmétique d’Ordre Supérieur.
- Mark Hayden.
 The Ensemble System.
- Ken Birman, Robert Constable, Mark Hayden, Jason Hickey, Christoph Kreitz, Robbert van Renesse, Ohad Rivlin, and Werner Vogels.
 The Horus and Ensemble projects: Accomplishments and limitations.
References IV

Bruce J. McAdam.
On the unification of substitutions in type inference.

Robin Milner.
A theory of type polymorphism in programming.

Alberto Martelli and Ugo Montanari.
An efficient unification algorithm.

Martin Odersky, Martin Sulzmann, and Martin Wehr.
Type inference with constrained types.

François Pottier.
A modern eye on ML type inference: old techniques and recent developments.
Lecture notes for the APPSEM Summer School, September 2005.

François Pottier and Didier Rémy.
The essence of ML type inference.

Bertrand Russell.
Mathematical logic as based on the theory of types.

References V

Christopher Strachey.
Fundamental concepts in programming languages.

J. B. Wells.
The essence of principal typings.

Jun Yang.
Explaining type errors by finding the source of a type conflict.