
Classic ML

Nuprl team

Cornell University

September 1, 2011

Nuprl team Classic ML September 1, 2011 1/28

Classic ML and EventML

During this lecture, we are going to learn about a
programming language called Classic ML.

We will actually use a language called EventML (developed
by the Nuprl team [CAB+86, Kre02, ABC+06]). EventML is
based on Classic ML and a logic called the Logic of
Events [Bic09, BC08, BCG11].

We will focus at the Classic ML part of EventML.

Nuprl team Classic ML September 1, 2011 2/28

Where does ML come from?

ML was originally designed, as part of a proof system called
LCF (Logic for Computable Functions), to perform proofs
within PPλ (Polymorphic Predicate λ-calculus), a formal
logical system [GMM+78, GMW79].

By the way, what does ML mean? It means Meta Language

because of the way it was used in LCF.

We refer to this original version of ML as Classic ML.

Many modern programming languages are based on Classic
ML: SML (Standard ML), OCaml (object-oriented
programming language), F# (a Microsoft product)...
Nowadays ML is often used to refer to the collection of these
programming languages.

Nuprl team Classic ML September 1, 2011 3/28

Where is ML used?

◮ F# is a Microsoft product used, e.g., in the .NET
framework.

◮ OCaml is developed by the INRIA. It has inspired F#.
The Coq theorem prover is written in OCaml. It has been
used in the implementation of
Ensemble [Hay98, BCH+00]. It is also used by companies.

◮ SML has formally defined static and dynamic semantics.
The HOL theorem prover is written in SML. It is
nowadays mainly used for teaching and research.

Nuprl team Classic ML September 1, 2011 4/28

What is Classic ML (or just ML for short)?

ML is a strongly typed higher-order impure functional
programming language.

What does it mean?

(Nowadays, ML often refers to a family of languages such as Classic ML,

SML, Caml, F#...)

Nuprl team Classic ML September 1, 2011 5/28

What is ML?
Higher-order.

Functions can do nothing (we will come back to that one):

\x. x

Functions can take numerical arguments:

\x. x + 1

let plus three x = x + 3 ;;

Functions can take Boolean arguments:

\a. \b. a or b

Nuprl team Classic ML September 1, 2011 6/28

What is ML?
Higher-order.

Functions can also take other functions as arguments.

Function application:

let app = \f. \x. (f x);;

Function composition:

let comp g h = \x. (g (h x)) ;;

Note that, e.g, app can be seen as a function that takes a
function (f) as input and outputs a function (\x. (f x)).

Nuprl team Classic ML September 1, 2011 7/28

What is ML?
Higher-order.

BTW, a function of the form \x.e (where e is an expression) is
called a λ-expression.

The terms of the forms x (a variable), (e1 e2) (an
application), and \x.e (a λ-expression) are the terms of the
λ-calculus [Chu32, Bar84].

In 1932, Church [Chu32] introduced a system (that led to the
λ-calculus we know) for “the foundation of formal logic”,
which was a formal system for logic and functions.

Nuprl team Classic ML September 1, 2011 8/28

What is ML?
Impure and functional.

Functional. Functions are first-class objects: functions can
build functions, take functions as arguments, return
functions...

Impure. Expressions can have side-effects: references,
exceptions.

(We are only going to consider the pure part of ML.)

Other functional(-like) programming language: Haskell (pure),
SML (impure), F# (impure)...

Nuprl team Classic ML September 1, 2011 9/28

What is ML?
Strongly typed.

What is a type?

A type bundles together “objects” (syntactic forms) sharing a
same semantics.

(Types started to be used in formal systems, providing
foundations for Mathematics, in the early 1900s to avoid
paradoxes (Russell [Rus08]).)

A type system (typing rules) dictates what it means for a
program to have a type (to have a static semantics).

What are types good for?

Types are good, e.g., for checking the well-defined behavior of
programs (e.g., by restricting the applications of certain
functions – see below).

Nuprl team Classic ML September 1, 2011 10/28

What is ML?
Strongly typed.

What else?

Flexibility. One of the best things about ML is that is has
almost full type inference (type annotations are sometimes
required). Each ML implementation has a type inferencer

that, given a semantically correct program, finds a type.

This frees the programmer from explicitly writing down types:
if a program has a type, the type inferencer will find one.

Given a semantically correct program, the inferred type
provides a static semantics of the program.

Consider \x. x + 2. 2 is an integer. + takes two integers and
returns an integer. This means that x is constrained to be an
integer. \x. x + 2 is then a function that takes an integer
and returns an integer.

Nuprl team Classic ML September 1, 2011 11/28

What is ML?
Strongly typed.

Can type inferencers infer more than one type? Is each type as
good as the others?

In ML it is typical that a program can have several types. The
more general the inferred types are the more flexibility the
programmer has (we will come back to that once we have
learned about polymorphism).

(ML’s type system has principal type but not principal
typing [Wel02] (a typing is a pair type environment/type).)

Nuprl team Classic ML September 1, 2011 12/28

What is ML?
Strongly typed.

Using types, some operations become only possible on values
with specific types.

For example, one cannot apply an integer to another integer:
integers are not functions. The following does not type check
(it does not have a type/a static semantics):

let fu = (8 6) ;;

Another example: using the built-in equality, one cannot check
whether a Boolean is equal to an integer. The following does
not type check (and will be refused at compile time):

let is eq = (true = 1) ;;

Nuprl team Classic ML September 1, 2011 13/28

What is ML?
Strongly typed.

What does type check then?
one can apply our plus three function to integers:

let plus three x = x + 3 ;;
let fu = plus three 6 ;;

One can test whether two integers are equal:

let i1 = 11;;
let i2 = 22;;
let is eq = (i1 = i2) ;;

Nuprl team Classic ML September 1, 2011 14/28

ML types

Integer. For example, 12 + 3 has type Int.

Boolean. For example, ! true has type Bool (! stands for the
Boolean negation).

List. For example, [1;7;5;3] has type Int List .

Function type. For example, let plus3 x = x + 3;; has type
Int → Int .

Product type. For example, (true , 3) has type Bool ∗ Int .

Disjoint union type. For example, inl (1 + 5) has type
Int + Int.

Nuprl team Classic ML September 1, 2011 15/28

Polymorphism

We claimed that inl (1 + 5) has type Int + Int. But it can
also have type Int + Bool, Int + Int List , . . .

For all type T, inl (1 + 5) has type Int + T. This can be
represented with a polymorphic type: Int + ’a, where ’a is
called a type variable, meaning that it can be any type.

Let us consider a simpler example: let id x = x;;

What’s its type?

The action id performs does not depend on its argument’s
type. It can be applied to an integer, a Boolean, a function, . . .
It always returns its argument. id’s type cannot be uniquely
determined. To automatically assign a (monomorphic type) to
id one would have to make a non-deterministic choice.
Instead, we assign to id the polymorphic type: ’a → ’a.

Nuprl team Classic ML September 1, 2011 16/28

Polymorphism

Formally, this form of polymorphism is expressed using the ∀
quantification.

This form of polymorphism is sometimes called infinitary

parametric polymorphism [Str00, CW85] and ∀ types are
called type schemes (see, e.g., system F [Gir71, Gir72]).

Polymorphism complicates type inference but does not make it
impossible.

Nuprl team Classic ML September 1, 2011 17/28

Polymorphism

Polymorphism allows one to express that a single program can
have more than one meaning. Using the ∀ quantification, one
can express that a single program has an infinite number of
meaning, i.e., can be used in an infinite number of ways.

The following function null has type ’a List → Bool:

l e t n u l l l s t =
ca se l s t o f [] => t r u e

o f x . x s => f a l s e ; ;

Nuprl team Classic ML September 1, 2011 18/28

Polymorphism

let declarations allow one to define polymorphic functions
while lambda expression do not. For example, the following
piece of code is typable:

l e t x = (\ x . x) i n (x 1 , x t r u e)

However, the following piece of code is not typable:

(\ x . (x 1 , x t r u e)) (\ x . x)

In the first example, the two last x’s stand for the identity
function for two different types. In the second example, the
two bound x’s in \x. (x 1, x true) have to be the same
function.

Nuprl team Classic ML September 1, 2011 19/28

Recursion

Another important feature of ML (and functional languages in
general) is recursion

Recursion allows functions to call themselves.

Recursion accomplishes what “while” loops accomplish in
imperative languages but in a functional way: functions call
functions.

For example, to compute the length of a list, one wants to
iterate through the list to count how many elements are in the
list. The following function computes the length of a list:

l e t r e c l e n g t h l s t =
ca se l s t o f [] => 0

o f x . x s => 1 + l eng t h x s ; ;

Nuprl team Classic ML September 1, 2011 20/28

Recursion

Given x and y , find q (quotient) and r (remainder) such that
x = (q ∗ y) + r .

The “while” solution:

q := 0; r := x;

while r >= y do q := q + 1; r := r - y; od

return (q, r);

The recursive solution:

l e t quot and rem x y =
l e t r e c aux q r =

i f r < y then (q , r)
e l s e aux (q + 1) (r − y)

i n aux 0 x ; ;

Nuprl team Classic ML September 1, 2011 21/28

Recursion

Another example: the factorial.

The “while” solution:

f := 1; i := 1;

while i <= x do

f := i * f;;

i := i + 1;;

od

The recursive solution:

l e t f x = i f x <= 1
then 1
e l s e x ∗ f (x − 1) ; ;

Nuprl team Classic ML September 1, 2011 22/28

Typing rules
Let us consider the following expression language:

v ∈Var (a countably infinite set of variables)
exp ∈Exp ::= v | exp1 exp2 | \v.exp | let v = exp1 in exp2

Let us consider the following type language:

a ∈TyVar (a countably infinite set of type variables)
τ ∈ ITy ::= a | τ1 → τ2
σ∈ ITyScheme ::= ∀{a1, . . . , an}.τ

Let environments (metavariable Γ) be partial functions from
program variables to type schemes. We write environments as
follows: {v1 7→ σ1, . . . , vn 7→σn}.

Let substitutions (metavariable sub) be partial functions from
type variables to types. We write substitutions as follows:
{a1 7→ τ1, . . . , an 7→ τn}.

Nuprl team Classic ML September 1, 2011 23/28

Typing rules
the function fv computes the set of free type variables in a
type or in a type environment.

We define the domain of an environment as follows:
dom({v1 7→σ1, . . . , vn 7→σn}) = {a1, . . . , an}.

We write substitution in a type as follows: τ [sub].

Let the instantiation of a type scheme be defined as follows:

τ ≺ ∀{a1, . . . , an}.τ
′

⇐⇒ ∃τ1, . . . , τn. (τ = τ ′[{ai 7→ τi | i ∈ {1, . . . , n}}])

We also define a function to “merge” environments:

Γ1 + Γ2
= {a 7→ τ | Γ2(a) = τ or (Γ1(a) = τ and a 6∈ dom(Γ2))}

Nuprl team Classic ML September 1, 2011 24/28

Typing rules

τ ≺ Γ (vid)

v : 〈Γ , τ〉

exp1 : 〈Γ , τ1 → τ2〉 exp2 : 〈Γ , τ1〉

exp1 exp2 : 〈Γ , τ2〉

exp : 〈Γ + {v 7→ τ}, τ ′〉

\v.exp : 〈Γ , τ → τ ′〉

exp : 〈Γ , τ〉 exp2 : 〈Γ + {v 7→ ∀(fv(τ) \ fv(Γ)).τ}, τ ′〉

let v = exp1 in exp2 : 〈Γ , τ
′〉

Nuprl team Classic ML September 1, 2011 25/28

References I

Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton, Christoph Kreitz, Lori Lorigo, and

E. Moran.
Innovations in computational type theory using nuprl.
J. Applied Logic, 4(4):428–469, 2006.

Henk P. Barendregt.

The Lambda Calculus: Its Syntax and Semantics.
North-Holland, revised edition, 1984.

Mark Bickford and Robert L. Constable.

Formal foundations of computer security.
In NATO Science for Peace and Security Series, D: Information and Communication Security, volume 14,
pages 29–52. 2008.

Mark Bickford, Robert Constable, and David Guaspari.

Generating event logics with higher-order processes as realizers.
Technical report, Cornell University, 2011.

Ken Birman, Robert Constable, Mark Hayden, Jason Hickey, Christoph Kreitz, Robbert van Renesse, Ohad

Rodeh, and Werner Vogels.
The Horus and Ensemble projects: Accomplishments and limitations.
In In DARPA Information Survivability Conference and Exposition (DISCEX 2000), pages 149–160. IEEE
Computer Society Press, 2000.

Mark Bickford.

Component specification using event classes.
In Grace A. Lewis, Iman Poernomo, and Christine Hofmeister, editors, CBSE, volume 5582 of Lecture Notes
in Computer Science, pages 140–155. Springer, 2009.

Nuprl team Classic ML September 1, 2011 26/28

References II
R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper, D. J. Howe,

T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith.
Implementing mathematics with the Nuprl proof development system.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

Alonzo Church.

A set of postulates for the foundations of logic.
The Annals of Mathematics, 33(2):346–366, April 1932.

Luca Cardelli and Peter Wegner.

On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys, 17(4):471–522, 1985.

Jean-Yves Girard.

Une extension de l’interprétation de Gödel à l’analyse, et son application a l’élimination des coupures dans
l’analyse et la théorie des types.
In Proceedings of the Second Scandinavian Logic Symposium, pages 63–92, 1971.

Jean-Yves Girard.

Interprétation Fonctionnelle et Élimination des Coupures de l’Arithmétique d’Ordre Supérieur.
PhD thesis, Universite de Paris VII, 1972.

Michael J. C. Gordon, Robin Milner, L. Morris, Malcolm C. Newey, and Christopher P. Wadsworth.

A metalanguage for interactive proof in LCF.
In POPL ’78: Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 119–130, New York, NY, USA, 1978. ACM.

Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth.

Edinburgh LCF: A Mechanised Logic of Computation., volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

Nuprl team Classic ML September 1, 2011 27/28

References III

Mark Hayden.

The Ensemble System.
PhD thesis, Cornell University, Department of Computer Science, 1998.
Technical Report TR98-1662.

Christoph Kreitz.

The Nuprl Proof Development System, Version 5, Reference Manual and User’s Guide.
Cornell University, Ithaca, NY, 2002.
http://www.nuprl.org/html/02cucs-NuprlManual.pdf .

Bertrand Russell.

Mathematical logic as based on the theory of types.
American Journal of Mathematics, 30(3):222–262, 1908.

Christopher Strachey.

Fundamental concepts in programming languages.
Higher Order Symbol. Comput., 13(1-2):11–49, 2000.

J. B. Wells.

The essence of principal typings.
In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan
Eidenbenz, and Ricardo Conejo, editors, Automata, Languages and Programming, 29th Int’l Colloq., ICALP
2002, volume 2380 of LNCS, pages 913–925. Springer, 2002.

Nuprl team Classic ML September 1, 2011 28/28

http://www.nuprl.org/html/02cucs-NuprlManual.pdf

