Recall the issue we faced last time:

What is the realising computational evidence for

\[\text{Induction: } (A(0) \land \forall x. A(x) \Rightarrow A(sx)) \Rightarrow \forall x. A(x) \] ?

How do we use \(A(0) \) and the function witnesses

\(\forall x. (A(x) \Rightarrow A(sx)) \) to produce the function for \(\forall x. A(x) \)?

We need \(\lambda (h. \ \text{spread}(h, b, f, _)) \) and?

must provide a realiser for \(\forall x. A(x) \).

We saw that \(A(0) \) \(A(1) \) \(A(2) \) \ldots

by \(\ldots \)

by \(\ldots \)

by \(\ldots \)

\[\begin{align*}
& \quad a_0 \quad a_1 \\
& \quad f(0)(a_0) \quad f(1)(f(0)(a_0)) \quad f(2)(f(0)(a_0))
\end{align*} \]

But \(_ \)? can't be \ldots. It must be a computation expression, a program. Something like \(\text{let rec ind}(x) = f(x-1, \text{ind}(x-1)) \) might work. In this case we need \(x > 0 \) to allow \(f(x-1) \).

What about the \(0 \) case? Then we use the base, \(b \). Thus

\[\text{ind}(x) = \begin{cases}
 b & \text{if } x = 0 \\
 f(x-1, \text{ind}(x-1)) & \text{else}
\end{cases} \]

In the Nuprl style proof rules we use

\[\text{Ind}(x; b; m, i. f(m, i)) \] with these computation rules.

\[\text{Ind}(0; b; _; b) \quad \text{Ind}(s0; b; m, i. f(m, i); f(x, \text{ind}(x; b; m, i. f(m, i)))) \]
We use the induction form for all computation on numbers. For example, to decide whether a number is zero, we compute with $\text{ind}(x; *; m, i, i)$ where i is any computation form that "shuts" like $\text{ap}(0, 0)$.

We can use ind to prove statements such as

1. $\forall x. (Z(x) \lor \neg Z(x))$

2. $\forall x, y. (\text{Eq}(x, y) \lor \neg \text{Eq}(x, y))$

3. $\forall x (\neg Z(x) \Rightarrow \exists y. \text{Suc}(y, x))$

We can use induction to prove

4. $\forall x, y. \exists z. \text{Add}(x, y, z)$

5. $\forall x, y. \exists z. \text{Mult}(x, y, z)$

We will prove 4 below. You should try 1, 2, 3, 5 as exercises. Also try 6 below.

6. Define $x < y$ iff $\exists z. (x + z = y \land z \neq 0)$. Show:

 (a) $x < s(x)$
 (b) $(x < y \land y < z) \Rightarrow x < z$
 (c) $\neg (x < x)$
1. ∀y. Add(0, y, 3) \iff Kleene Ax & add(0, y) = y
2. ∀x, y, z. (Add(x, y, z) \Rightarrow Add(s(x), y, s(z)))

Kleene Ax 19 add(s(x), y) = s(add(x, y))

We show Theorem ∀x, y, z. Add(x, y, z) by induction (Kleene Ax 19)

\[\vdash \exists z. Add(x, y, z) \text{ by } \lambda(x, y, z) \]
\[x : \mathbb{D} \vdash \exists z. Add(x, y, z) \text{ by } \lambda(y, z) \]
\[x : \mathbb{D}, y : \mathbb{D} \vdash \exists z. Add(x, y, z) \text{ by } \lambda(x, y, z) \]
\[\vdash \exists z. Add(0, y, z) \text{ by } \lambda(y, z) \]
\[\vdash 0 \text{ by } y \]
\[\vdash Add(0, y, z) \text{ by } \lambda(y, z) \]
\[\vdash 0 \vdash \exists z. Add(s(0), y, z) \text{ by } \lambda(y, z) \]
\[x : \mathbb{D}, y : \mathbb{D}, z : \mathbb{D} \vdash \exists z. Add(x, y, z) \text{ by } \lambda(x, y, z) \]
\[x : \mathbb{D}, y : \mathbb{D}, z : \mathbb{D} \vdash \exists z. Add(s(x), y, z) \text{ by } \lambda(x, y, z) \]
\[\vdash s(0) \text{ by } y \]
\[\vdash Add(s(0), y, z) \text{ by } \lambda(y, z) \]
\[\vdash Add(5(0), y, z) \text{ by } \lambda(y, z) \]
\[\vdash \lambda(x, y, z). Add(x, y, z) \Rightarrow Add(s(x), y, s(z)) \text{ by } \lambda(x, y, z) \]
\[\vdash \lambda(x, y, z). Add(x, y, z) \Rightarrow Add(s(x), y, s(z)) \text{ by } \lambda(x, y, z) \]
\[\vdash i, s(0), a \vdash Add(s(0), y, s(z)) \text{ by } \lambda(y, z) \]
The computation form \(\text{ind}(x; b; u, i, f) \) is recursive. You might know that recursion is more expensive than iteration. Can we use computational forms such as

\[
\text{for } i = 0 \text{ to } n \text{ do } x := f(i, x) \text{ od}
\]

as forms of induction? We'd be computing

\[
f(0, x_0), f(1, f(0, x_0)), f(2, f(1, f(0, x_0))), \ldots
\]

If we set \(x = b \), this would be a version of induction. Here is another version.

\[
x := b ; x := 0
\]

\[
\text{while } i < x \text{ do
} x := f(i, x)
\text{ od}
\]

It would be interesting to see if we can treat

\[
\text{while } b(x) \text{ do
} x := f(x)
\text{ od}
\]

as a realizer in pure first-order logic. We will consider this further on Thursday.
We can have a more efficient form of induction if we used a "tail recursive" or iterative form. For example, we can define an iterative add that uses only a constant amount of space vs a linear amount.

\[
\text{add}(x, y) = \text{it-add}(x, y, y) \quad \text{where}
\]

\[
\text{it-add}(x, y, z) =
\]

\[
\begin{align*}
& \text{if } x = 0 \text{ then } 3 \\
& \text{else } \text{it-add}(x-1, y, z+1)
\end{align*}
\]

What is the iterative form of induction?