
CS 5860 Formalizing Arithmetic - Tue Oct 18, 2011

1 Plan

1. Review the issues involved in expressing arithmetic in FOL, eg. treating equality, role of explicit
recursive function definitions, e.g. add(x, y), mult(x, y), obtaining zero and successor without con-
stants in the base language.

2. Arithmetic as a general example of specification. Projects could include specifying lists, finite sets,
finite bags, graphs, trees, etc.

2 Axioms for Arithmetic from textbooks

Kleene’s language explicitly introduces 0 and successor s(x), which he denotes as a′ for s(a).

Figure 1: Kleene Introduction to Metamathematics 1952

1



CS 5860 Formalizing Arithmetic - Tue Oct 18, 2011

We can write the combination of his 14 and 17 as

a = b ⇐⇒ a′ = b′

We express this as

∀x1, x2, y1, y2.(Succ(x1, y1) & Succ(x2, y2)) ⇒ (Eq(x1, x2) ⇐⇒ Eq(y1, y2))

Consider his Axiom 15 ¬(a′ = 0). We can express it as

∀x, y.(Succ(x, y) ⇒ ¬Eq(y, 0)).

Notice that we can define False as Eq(0, s(0)), i.e. as 0 = 1. We then have results like

∃xEq(x, s(x)) ⇒ Eq(0, s(0)) which is

∃xEq(x, s(x)) ⇒ False which is

¬∃xEq(x, s(x))

We can also prove
∀x(Eq(x, s(x)) ⇒ Eq(0, s(0)).

3 Specifying Addition with Axioms

Recall this definition from the Oct 6 lecture.

add(0, y) = y

add(s(x), y) = s(add(x, y))

We can symbolize the atomic relation add(x, y) = z as Add(x, y, z). We need to express the equations
for the primitive recursive definition without the constants. Here is one way to do it.

Z(x) ⇒ A(x, y, y)

(A(x, y, z) & Succ(x, x′)) ⇒ A(x′, y, z′) & Succ(z, z′)

A good exercise is to write a similar equation for defining Mult(x, y, z) using Add(x, y, z). Our defini-
tion for A(x, y, z) could be the one we want for Add(x, y, z). What do you think?

Can we prove these properties?
∀x, y.∃z.Add(x, y, z)

∀x, x′, y, y′, z, z′.(Eq(x, x′) & Eq(y, y′) & Add(x, y, z) & Add(x′, y′, z′)) ⇒ Eq(z, z′)

Here we left z, z′ as free variables. We could also have used the quantifier prefix ∀x, x′, y, y′, z, z′.

2


