## 1 Plan

1. Review the issues involved in expressing arithmetic in FOL, eg. treating equality, role of explicit recursive function definitions, e.g. $\operatorname{add}(x, y), \operatorname{mult}(x, y)$, obtaining zero and successor without constants in the base language.
2. Arithmetic as a general example of specification. Projects could include specifying lists, finite sets, finite bags, graphs, trees, etc.

## 2 Axioms for Arithmetic from textbooks

Kleene's language explicitly introduces 0 and successor $s(x)$, which he denotes as $a^{\prime}$ for $s(a)$.

Group A. Postulates for the predicate calculus.
Group A1. Postulates for the propositional calculus.

1a. $\mathrm{A} \supset(\mathrm{B} \supset \mathrm{A})$.
1b. $(A \supset B) \supset((A \supset(B \supset C)) \supset(A \supset C))$.
3. $\mathrm{A} \supset(\mathrm{B} \supset \mathrm{A} \& \mathrm{~B})$.

5a. $A \sqsupset \nexists \mathrm{~A} \vee \mathrm{~B}$.
5b. $B \supset A \vee B$.
7. $(\mathrm{A} \supset \mathrm{B}) \supset((\mathrm{A} \supset \neg \mathrm{B}) \supset \neg \mathrm{A})$.
2. $\frac{\mathrm{A}, \mathrm{A} \supset \mathrm{B}}{\mathrm{B}}$.

4a. $A \& B \supset A$.
4b. $A \& B \supset B$.
6. $(\mathrm{A} \supset \mathrm{C}) \supset((\mathrm{B} \supset \mathrm{C})$
$\supset(A \vee B \supset C))$.
$\left[\begin{array}{r}8^{\circ} \neg \neg A \supset A . \\ \text { Boblen Logic }\end{array}\right]$

Group A2. (Additional) Postulates for the predicate calculus.
9. $\frac{C \supset A(x)}{C \supset \forall x A(x)}$
11. $A(t) \supset \exists x A(x)$.
10. $\forall \mathrm{xA}(\mathrm{x}) \supset \mathrm{A}(\mathrm{t})$.
12. $\frac{A(x) \supset C}{\exists x A(x) \supset C .}$

Group B. (Additional) Postulates for number theory.
13. $\mathrm{A}(0) \& \forall \mathrm{x}\left(\mathrm{A}(\mathrm{x}) \supset \mathrm{A}\left(\mathrm{x}^{\prime}\right)\right) \supset \mathrm{A}(\mathrm{x})$.
14. $a^{\prime}=b^{\prime} \supset a=b$.
15. $\neg a^{\prime}=0$.
16. $a=b \supset(a=c \supset b=c)$.
17. $a=b \supset a^{\prime}=b^{\prime}$.
18. $a+0=a$.
19. $a+b^{\prime}=(a+b)^{\prime}$.
20. $a \cdot 0=0$.
21. $a \cdot b^{\prime}=a \cdot b+a$.

Figure 1: Kleene Introduction to Metamathematics 1952

We can write the combination of his 14 and 17 as

$$
a=b \Longleftrightarrow a^{\prime}=b^{\prime}
$$

We express this as

$$
\forall x_{1}, x_{2}, y_{1}, y_{2} \cdot\left(\operatorname{Succ}\left(x_{1}, y_{1}\right) \& \operatorname{Succ}\left(x_{2}, y_{2}\right)\right) \Rightarrow\left(E q\left(x_{1}, x_{2}\right) \Longleftrightarrow E q\left(y_{1}, y_{2}\right)\right)
$$

Consider his Axiom $15 \quad \neg\left(a^{\prime}=0\right)$. We can express it as

$$
\forall x, y \cdot(S u c c(x, y) \Rightarrow \neg E q(y, 0)) .
$$

Notice that we can define False as $E q(0, s(0))$, i.e. as $0=1$. We then have results like

$$
\begin{gathered}
\exists x E q(x, s(x)) \Rightarrow E q(0, s(0)) \text { which is } \\
\begin{array}{c}
\exists x E q(x, s(x)) \Rightarrow \text { False which is } \\
\neg \exists x E q(x, s(x))
\end{array}
\end{gathered}
$$

We can also prove

$$
\forall x(E q(x, s(x)) \Rightarrow E q(0, s(0))
$$

## 3 Specifying Addition with Axioms

Recall this definition from the Oct 6 lecture.

$$
\begin{gathered}
a d d(0, y)=y \\
\operatorname{add}(s(x), y)=s(\operatorname{add}(x, y))
\end{gathered}
$$

We can symbolize the atomic relation $a d d(x, y)=z$ as $A d d(x, y, z)$. We need to express the equations for the primitive recursive definition without the constants. Here is one way to do it.

$$
\begin{gathered}
Z(x) \Rightarrow A(x, y, y) \\
\left(A(x, y, z) \& \operatorname{Succ}\left(x, x^{\prime}\right)\right) \Rightarrow A\left(x^{\prime}, y, z^{\prime}\right) \& \operatorname{Succ}\left(z, z^{\prime}\right)
\end{gathered}
$$

A good exercise is to write a similar equation for defining $\operatorname{Mult}(x, y, z)$ using $\operatorname{Add}(x, y, z)$. Our definition for $A(x, y, z)$ could be the one we want for $\operatorname{Add}(x, y, z)$. What do you think?

Can we prove these properties?

$$
\begin{gathered}
\forall x, y \cdot \exists z \cdot A d d(x, y, z) \\
\forall x, x^{\prime}, y, y^{\prime}, z, z^{\prime} \cdot\left(E q\left(x, x^{\prime}\right) \& E q\left(y, y^{\prime}\right) \& \operatorname{Add}(x, y, z) \& \operatorname{Add}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right) \Rightarrow E q\left(z, z^{\prime}\right)
\end{gathered}
$$

Here we left $z, z^{\prime}$ as free variables. We could also have used the quantifier prefix $\forall x, x^{\prime}, y, y^{\prime}, z, z^{\prime}$.

