Recall the simple case of n processes attempting to decide on a Boolean value by voting. The problem is easy if all processes are reliable, but theoretically beyond the capability of deterministic processes if even one can fail. We use a "quorum method" due to David Gifford (Stanford, Xerox Parc) 1979. We show that the following simple consensus protocol can tolerate f failures and might reach consensus if $n=3 \cdot f+1$ processes vote on values, and if the environment delivers messages in a sufficiently random manner. (The Ben-Or protocol uses enforced randomness to guarantee that consensus can be achieved with high probability.)

We call our protocol simple consensus (or the $2 / 3$ protocol). In the general case it is used among clients and n replicas of a resource to guarantee executing a stream of client requests (possibly conflicting) in a specific order. We imagine that an unbounded number of clients are issuing commands asynchronously to a resource (imagine a replicated data bases, e.g. Amazon orders, the Google file system, etc.). They want all replicas to see the same execution log, say for command cmd_{i} we want each replica to execute them in the same order $\mathrm{cmd}_{1}, \mathrm{cmd}_{2}, \ldots, \mathrm{cmd}_{n}, \ldots$. For simplicity, we assume each cmd_{i}, is a Boolean value, 0 or 1. The general case is a simple extension. We also assume that replicas are voting for a single instance, the $\mathrm{n}^{\text {th }}$ command.

For interested students, Mark Bickford and Vincent Rahli have implemented this protocol in Event ML and have provided a closely related version correct (safe) in Nuprl.
G is a group of participating processes, called replicas, P_{i}. Each P_{i} is identified by its address in the type Addr. Thus G can be given by a list of addresses, (Addr)List. The protocol is designed to tolerate f failures. Simple consensus requires $3 \cdot f+1$ processes and relies on a quorum of $2 \cdot f+1$ processes. The quorum allows voting for the consensus value.

Clients propose values to processes in G. The proposal has the format $\langle n, c\rangle$ where $n \in \mathbb{N}^{+}$and c is a command. The client is proposing that c is the $n^{\text {th }}$ command. The value is the pair $\langle n, c\rangle$.

The SC protocol will consider multiple proposals, but any P_{i} in G will accept only one client proposal $\langle n, c\rangle$ as the $n^{t h}$ command. When P_{i} receives this proposal, it will ask the group G to vote on it. It will collect a quorum of $2 \cdot f+1$ votes (possible since we assume at most f process can fail). It will see if the votes are unanimous, and if so decide that value. Otherwise it starts another round of voting, considering its first proposal as the first round. So its proposals have the form $\langle r, v, i\rangle$ where $v=\langle n, c\rangle, r \in \mathbb{N}$ is the round number, and i is the address of P_{i}.

```
    @ Replica (i,G) i:Addr, n: }\mp@subsup{\mathbb{N}}{}{+},\textrm{b}:\mathbb{B},\textrm{f}:\mp@subsup{\mathbb{N}}{}{+},\mathrm{ votes:(N+N
    newproposal: rcv(<n,b>) effect initialize(r,v); Voter(r,v)
start voting at round 0 with
value <n,b>
```

Note, we assume that v^{\prime} is a vote for the $\mathrm{n}^{\text {th }}$ command.

If P_{j} already voted for $\mathrm{n}^{\text {th }}$ command ignore this vote.

Note cons (a;L) adds a to the head of list L.
where initialize $==r:=0, v:=\langle n, b>$ $\operatorname{Voter}(r, v)=\operatorname{NewRound}(r, v, i)$
where $\operatorname{NewRound}(\langle r, v, i\rangle)==\operatorname{SendVote}(\langle r, v, i\rangle)$; Quorum
where $\operatorname{SendVote}(\langle r, v, i\rangle)=\operatorname{broadcast}(G)(\langle r, v, i\rangle)$ Quorum (<r,v,i>) = for $j: G$ do $\operatorname{voted}(j):=$ false $o d ;$ count:=0; votes:=nil while count< $2 \cdot f+1$ do $\operatorname{rcv}\left(\left\langle r^{\prime}, v^{\prime}, j\right\rangle\right)$ effect
if $\left.r^{\prime}\right\rangle r$ then NewRound $\left(\left\langle r^{\prime}, v^{\prime}, i\right\rangle\right)$ if $r^{\prime}<r$ then skip (goto od)
else if voted(j) then skip (goto od)
else $\operatorname{voted}(j):=$ true;
cons (v^{\prime}; votes)
count:=count+1

od

if unanimous(Votes) then Notify(value(Votes))
NewRound is called on round $\mathrm{r}+1, \mathrm{P}_{i}$ votes for the majority which exists for $2 \cdot f+1$ an odd number, $b \in \mathbb{B}$.

```
Note votes is \(\left(\mathbb{N}^{+} \times \mathbb{B}\right)\) List and value is the unanimous value of the list.
```

Clients will propose a pair $\langle n, \mathrm{cmd}\rangle$, a proposal that command cmd be number n. The proposal is made to a group G of replicas P_{i} located at some address loc_{i}. The P_{i} will vote on which command is the $n^{t h}$. They might be voting simultaneously on several proposals.

We require the agreement property that if G decides on the $n^{\text {th }}$ command, then all processes that have not failed reach the same decision. We also prove a liveness property, that for any state of the protocol, it is possible to reach agreement by some choice of the delivery of messages, e.g. some action of the environment.

Suppose SC decides at two or more locations, consider two of them P_{i}, P_{j}. Suppose P_{i} decides in the lower round if $r \neq r^{\prime}$.
P_{i} decides v in round r at event d_{i}.
So P_{i} sees $2 \cdot f+1$ unanimous (think 3 of 4) in round r, so at least $2 \cdot f+1$ voted for v in this round.
Say at a later or equal round $r^{\prime} \geq r P_{j}$ votes for $v^{\prime} \neq v$, then (3 votes for v^{\prime})

If P_{j} participates in this round r and sees a unanimous value of $2 \cdot f+1$ votes (say 3 votes) then one of these must be the same as the vote at P_{i} thus $v=v^{\prime}$.
picking two sets of $2 \cdot f+1$ values from $3 \cdot f+1$ values, they must over lap, would need

$2 \cdot f+1$	values to have disjoint unanimous.
$2 \cdot f+1$	(are $f+1$ short!)

$4 \cdot f+2$	

Any process participating at round r will eventually collect at least $f+1$ votes from this group, a majority, so it will vote for v as well and thus in a higher round r^{\prime} if one occurs.

1 Liveness

If f processes fail or are very slow, then only $2 \cdot f+1$ participate, an odd number, so they can't tie (in binary case). So the environment can arrange a decision.

More generally,
FLP is a way to get stuck, likewise if all $3 \cdot f+1$ replicas receive a different command, then it is possible that no decision is possible.

