
CS 5860 Correctness of Simple Consensus (November 29, 2011)

Recall the simple case of n processes attempting to decide on a Boolean value by voting. The problem
is easy if all processes are reliable, but theoretically beyond the capability of deterministic processes if
even one can fail. We use a “quorum method” due to David Gifford (Stanford, Xerox Parc) 1979. We
show that the following simple consensus protocol can tolerate f failures and might reach consensus if
n = 3 · f + 1 processes vote on values, and if the environment delivers messages in a sufficiently random
manner. (The Ben-Or protocol uses enforced randomness to guarantee that consensus can be achieved
with high probability.)

We call our protocol simple consensus (or the 2/3 protocol). In the general case it is used among clients
and n replicas of a resource to guarantee executing a stream of client requests (possibly conflicting) in a
specific order. We imagine that an unbounded number of clients are issuing commands asynchronously to
a resource (imagine a replicated data bases, e.g. Amazon orders, the Google file system, etc.). They want
all replicas to see the same execution log, say for command cmdi we want each replica to execute them in
the same order cmd1, cmd2, . . ., cmdn, For simplicity, we assume each cmdi, is a Boolean value, 0 or
1. The general case is a simple extension. We also assume that replicas are voting for a single instance,
the nth command.

For interested students, Mark Bickford and Vincent Rahli have implemented this protocol in Event ML
and have provided a closely related version correct (safe) in Nuprl.

G is a group of participating processes, called replicas, Pi. Each Pi is identified by its address in the type
Addr. Thus G can be given by a list of addresses, (Addr)List. The protocol is designed to tolerate f
failures. Simple consensus requires 3 · f + 1 processes and relies on a quorum of 2 · f + 1 processes. The
quorum allows voting for the consensus value.

Clients propose values to processes in G. The proposal has the format ⟨n, c⟩ where n ∈ N+ and c is a
command. The client is proposing that c is the nth command. The value is the pair ⟨n, c⟩.

The SC protocol will consider multiple proposals, but any Pi in G will accept only one client proposal
⟨n, c⟩ as the nth command. When Pi receives this proposal, it will ask the group G to vote on it. It will
collect a quorum of 2 · f + 1 votes (possible since we assume at most f process can fail). It will see if the
votes are unanimous, and if so decide that value. Otherwise it starts another round of voting, considering
its first proposal as the first round. So its proposals have the form ⟨r, v, i⟩ where v = ⟨n, c⟩, r ∈ N is the
round number, and i is the address of Pi.

1

CS 5860 Correctness of Simple Consensus (November 29, 2011)

@ Replica (i,G) i:Addr, n: N+, b: B, f:N+, votes:(N+ x B) List

newproposal: rcv(<n,b>) effect initialize(r,v); Voter(r,v)

start voting at round 0 with

value <n,b>

where initialize == r:=0, v:=<n,b>

Voter(r,v) = NewRound(r,v,i)

where NewRound(<r,v,i>)== SendVote(<r,v,i>); Quorum

where SendVote(<r,v,i>) = broadcast(G)(<r,v,i>)

Quorum(<r,v,i>) =

for j:G do voted(j):= false od; count:=0; votes:=nil

while count< 2·f +1 do

Note, we assume that v′ is a

vote for the nth command.

rcv(<r′, v′, j>) effect

if r′>r then NewRound(<r′, v′, i>)

if r′<r then skip (goto od)

If Pj already voted for nth

command ignore this vote.

else if voted(j) then skip (goto od)

else voted(j):= true;

Note cons(a;L) adds a to the

head of list L.

cons(v′; votes)

count:=count+1

od

if unanimous(Votes) then Notify(value(Votes))

NewRound is called on round

r+1, Pi votes for the majority

which exists for 2 · f + 1 an odd

number, b ∈ B.

else NewRound(<r+1, majority(Votes), i>)

where Notify(v) = broadcast(G)(decided(v))

Note votes is (N+ x B) List and value is the unanimous value of the list.

Clients will propose a pair ⟨n, cmd⟩, a proposal that command cmd be number n. The proposal is made
to a group G of replicas Pi located at some address loci. The Pi will vote on which command is the nth.
They might be voting simultaneously on several proposals.

We require the agreement property that if G decides on the nth command, then all processes that have
not failed reach the same decision. We also prove a liveness property, that for any state of the protocol,
it is possible to reach agreement by some choice of the delivery of messages, e.g. some action of the
environment.

Suppose SC decides at two or more locations, consider two of them Pi, Pj . Suppose Pi decides in the lower
round if r ̸= r′.

Pi decides v in round r at event di.

So Pi sees 2 · f + 1 unanimous (think 3 of 4) in round r, so at least 2 · f + 1 voted for v in this round.

Say at a later or equal round r′ ≥ r Pj votes for v′ ̸= v, then (3 votes for v′)

2

CS 5860 Correctness of Simple Consensus (November 29, 2011)

If Pj participates in this round r and sees a unanimous value of 2 · f + 1 votes (say 3 votes) then one of
these must be the same as the vote at Pi thus v = v′.

picking two sets of 2 ·f +1 values
from 3 · f + 1 values, they must
over lap, would need

2 · f + 1
2 · f + 1
−−−−
4 · f + 2

values to have disjoint unanimous.

(are f + 1 short!)

Any process participating at round r will eventually collect at least f + 1 votes from this group, a
majority, so it will vote for v as well and thus in a higher round r′ if one occurs.

1 Liveness

If f processes fail or are very slow, then only 2 · f + 1 participate, an odd number, so they can’t tie (in
binary case). So the environment can arrange a decision.

More generally,

FLP is a way to get stuck, likewise if all 3 · f + 1 replicas receive a different command, then it is possible
that no decision is possible.

3

