
CS 5860 Review of Induction (November 17, 2011)

To understand complete induction on causal order, it helps to review ordinary (simple) induction on
numbers, N, and compare it to complete induction on numbers. These induction forms are instances of
primitive recursion used to define addition and subtraction in Kleene’s formalism. Let’s review primitive
recursion first.

1 Primitive Recursion

informal notation
f(0, y) = g(y)
f(x+ 1, y) = h(x, y, f(x, y))

Note, the order of arguments to h does not matter, another good choice seen in textbooks is h(x, f(x, y), y).

using if-then-else
f(x, y) = if x = 0 then g(y) else h(x− 1, y, f(x− 1, y))

Note, since we don’t use x+ 1 as an input form, we need x− 1 as an operation.

Using currying of arguments
f(0)(y) = g(y)
f(x+ 1)(y) = h(x)(y)(f(x, y))

Using functions as outputs
f(0) = λ(y.g(y))
f(x+ 1) = λ(y.h(x)(y)(f(x)(y)))

f as a function and if-then-else

f = λ
(
x.λ

(
y. if x = 0 then g(y)

else h(x)(y)(f(x− 1)(y))
))

The fix format is the most general form of recursion.

* fix
(
λ
(
f.λ(x.λ(y. if x = 0 then g(y) else h(x)(y)(f(x− 1)(y))))

))
The fix-combinator treats f recursively. The first step of reduction yields the result

λ(x.λ(y. if x = 0 then g(y) else h(x)(y)(fix(—)(x− 1)(y))))

where fix(—) is the entire expression labeled *.

This shows us the essence of recursion, we reuse the entire definition during evaluation. We can define all
recursive functions this way. But some do not terminate, e.g. fix(λ(x.x)) reduces in one step to itself!
We call this special term div or sometimes ⊥ (the ⊥ form is called Scott’s bottom element.)
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The induction rule as primitive recursion.
Simple induction is the rule (in curried form):
P (0) ⇒ (∀x.(P (x) ⇒ P (x+ 1))) ⇒ ∀x.P (x)

We can derive a realizer for it using fix. We know the form of the realizer is
λ
(
b.λ

(
h.λ(x. if x = 0 then b else h(x− 1)(f(x− 1)))

))
Where f(x) should prove P (x); so that means that f should be the function we want in ∀x.P (x)!
So f = λ(b.λ(h.λ(x, if x = 0 then b else h(x− 1)f(x− 1)))).

If we supply f with a specific proof b of P (0) and a specific function h0 for ∀x.(P (x) ⇒ P (x + 1)), then
we get

f(b0)h0) = λ(x. if x = 0 then b0 else h0(x− 1)(f(b0)(h0)(x− 1)))
which is the evidence of ∀x.P (x).

This recursive function is given exactly by

fix
(
λ
(
f.λ(b.λ(h.λ(x. if x = 0 then b

else h(x− 1)(f(b)(h)(x− 1)))))
))

It is the realizer for simple induction. We can see this intuitively, and we can take it as evidence for the
induction axiom, atomic evidence.

One step of reduction reduces this to

λ
(
b.λ

(
h.λ(x. if x = 0 then b

else h(x− 1) fix(−)(b)(h)(x− 1))
))

If we supply b0 and h0 we get
λ(x. if x = 0 then b0 else h0(x− 1) fix(−)(b0)(h0)(x− 1))
as the realizer for ∀x.P (x) provided
b0 proves (is evidence for) P (0) and
h0 proves (is evidence for) ∀x.(P (x) ⇒ P (x+ 1))

We can see the rule term for induction in Nuprl as a primitive constant for this term
ind(x; b0;u,f.h0(u)(f(u))).

The constant is designed to be a good logical evidence form. It is a primitive induction constant, in logical
form.

We now want to find the realizer for complete induction on N. Here is the logical form of the rule.

Complete induction
∀x.(∀y.(y < x ⇒ P (y)) ⇒ P (x)) ⇒ ∀x.P (x)

It turns out to be handy to write the hypothesis in the following equivalent way (by “un-currying”):
∀y : {z : N|z < x}.P (y)
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We mean by {z : N|z < x} the type of all elements of N for which we have evidence that z < x, but we
will not use this evidence in computations. We call this a set type or a refinement type. We can use this
as a sort in FOL.

The proof rule for complete induction has the form

n : N ⊢ P (n) by cind(n;x, f. )

n : N, x : N, f : ∀y : {z : N|z < x} ⊢ P (x) by ap(f ; exp1(x);u1. )

⊢ exp1(x) ∈ {z : N|z < x}
u1 : P (exp1(x)) ⊢ P (x) by ap(f ; exp2(x);u2. )

...

u1 : P (exp1(x)), . . . , uk : P (expk(x)) ⊢ P (x) by ap(f ; expk(x);uk. )

⊢ expk(x) ∈ {z : N|z < x}
⊢ P (x) by g(x, u1, . . . , uk)

The evidence term is cind(n;x, f.g(x, u1, . . . , uk)).

How does it compute?

How do we compute with cind(n;x, f.g(x, u1, . . . , uk)) ?

The reduction rule is that in one step we reach an expansion of cind(n;x, f.g(x, f(exp1(x)), . . . , f(expk(x))))
namely, substituting cind(expi(n);x, f. ) for f(expi(x)) to get
g(n, cind(exp1(n); ), . . . , cint(expk(n), ))

This is like defining
f(x) = g(x, f(exp1(x)), . . . , f(expk(x)) hence
f = λ(x, g(x, f(exp1(x)), . . . , f(expk(x))))

and finally
fix(λ(f.λ(x.g(x, f(exp1(x)), . . . , f(expk(x))))))

It is possible to derive this form from the one for simple (primitive) induction and conversely.

Extra credit exercise. Prove complete induction from primitive induction and conversely. Use the form of
the realizers to guide your proofs. This is not easy.
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