
CS 5860 Lecture Notes: A Theory of Events in First Order Logic (November 17, 2011)

1 Introduction

Last time we defined the very important causal order relation, e1 < e2. It is the transitive closure of Pred(x, y).
Now we will show that this is a decidable relation, i.e.

∀x : E.∀y : E.((x < y)∨ ∼ (x < y)).

We first look closely at the possible structure of this ordering and review its definition. We use message sequence
diagrams (fig 1).

Figure 1: message sequence diagram

The red events show those which are causally before e6 at loc3. The arrows (→) indicate messages are sent,
so the target of the arrow is a receive event. The lines without arrows (—), say from e5 to e6 at loc3 shows a
simple predecessor relation, event e5 might change the state at loc3 and can affect what happens after e6.

We can define the predecessor events at a location as a list, say at loc3 the predecessor events of e6 are the list

1



CS 5860 Lecture Notes: A Theory of Events in First Order Logic (November 17, 2011)

before(e6) = [e5, e4, e3, e2, e1]. The events causally before an event form a tree which we call the cone of the
event.

Definition
before(e) = if first(e) then [e,nil]
else cons(e, before(pred(e)))

where cons(e), [e1, . . . , en, nil ]) =
[e, e1, . . . , en, nil ].

Definition
cone (e) =

if rcv?(e) then if first(e)

then 〈e, loc(e), cone(sender(e))〉
else 〈e, cone(pred(e)), cone(sender(e))〉

else if first(e)

then 〈e, loc(e), nil〉
else 〈e, cone(pred(e)), nil〉

One way to decide whether e1 < e2 is to form cone(e2) and then check to see if e1 ∈ cone(e2) using the fact that
equality of events is decidable.

Another way is to prove it by induction of causal order.

Theorem
∀x, y : E.(x < y) ∨ ∼ (x < y) - causal order is decidable.

The induction principle for causal order is this

Axiom
∀x : E.(∀y : E.(y < x⇒ P (y))⇒ P (x))⇒ ∀x : E.P (x)

This is like complete induction on N, recall
∀n : ((∀y.(y < n⇒ P (y))⇒ P (n))⇒ ∀x.P (x)

See the supplemental notes for Tue Nov. 15 for an argument that causal order is strongly well founded, given in
the technical report: A Causal Logic of Events in Formalized Computational Type Theory .

In that article we do not discuss explicitly and fully the idea of a choice function sequence that correlates events
to natural numbers N. Thus that account does not take into consideration the kinds of nondeterminism that
arise in real world systems. Such an account depends on some mechanism to introduce choice or uncertainty in
the model. This choice arises from not knowing in advance the arrival order of messages destined for a location.
We can conduct a “tour” of event orderings only after the fact. We do not have time in this course to discuss the
mechanisms for non determinism in detail. We will however examine the notion in more detail when we study
consensus protocols next week. We might at that time sketch the idea of choice sequences.

2



CS 5860 Lecture Notes: A Theory of Events in First Order Logic (November 17, 2011)

Next we examine the notion of state at a location. We imagine that processes at loci have access to local state
accessible by identifiers, another basic sort of the theory denoted Id(x). The state stores data or values. We say
∀i, x.(Loc(i) & Id(x)⇒ ∃v.Value(v) & St(i, x, v))

We assume only finitely many identifiers for the examples we consider, denoted x1, x2 . . . xn. We can specify the
initial values x initially i is the initial value of identifier x at location i.

We also introduce the temporal operators
x when e
x after e

Axiom
∀e : E.¬first(e)⇒ (x when e) = (x after pred(e))

Definition
x4 e iff x after e 6= x when e
This is the change operator.

2 Message Automata Realizers for event statements

1. @i p(x initially i) realizes ∀e@i. first(e)⇒ p(x when e)

2. @i rcvi(v) event x := f(s, v) for s the state at i realizes
∀x : Value.∀l : Link.∀e@ i.e = rcvi(v)⇒ (x after e) = f(s, v)

3. @i sendl(v) realizes
∀e@i.(kind(e) = sende(v))⇒ ∃e′@ dest(e). kind(e′) = rcve(v)

& sender(e′) = e

4. @i only L affects x for L a list of actions realizes
∀e@i. kind(e) 6∈ L⇒ ¬(x4 e) & (x4 e⇒ kind(e) ∈ L)
This is called a frame condition

5. @i only L sends 〈v, tag〉 realizes
∀e@ dest(l).kind(e) = rcvl(〈v, tag〉)⇒ kind(sender(e)) ∈ L.
This is called a sends frame condition.

Now we are prepared to treat the acknowledgement protocol from Nov. 10 in more detail. Recall the context.

As an example, suppose we want a system of processes P with the property that two of its processes, say S and
R connected by link l1 from S to R and l2 from R to S should operate using explicit acknowledgement. So
when S sends to R on l1 with tag tg, it will not send again on l1 with this tag until receiving an
acknowledgement tag, ack, on l2. The specification can be stated as a theorem about event structures.

3



CS 5860 Lecture Notes: A Theory of Events in First Order Logic (November 17, 2011)

Figure 2: S and R are processes linked by reliable FIFO communication channels l1, l2.

Theorem 1 For any distributed system P with two designated processes S and R linked by S l1−→R and Rl2−→S

with two new tags, tg and ack, we can construct an extension P ′ of P such that the following specification
holds: ∀e1, e2 : E.loc(e1) = loc(e2) = S & kind(e1) = kind(e2) = send(l1, tg). e1 < e2 ⇒ ∃r : E.loc(r) =
S & kind(r) = rcv(l2, ack).e1 < r < e2.

This theorem is true because we know how to add clauses to processes S and R to achieve the specification,
which means that the specification is constructively achievable. We can prove the theorem constructively and in
the process define the extension P ′ implicitly. Here is how.

Proof: What would be required of P ′ to meet the specification? Suppose in P ′ we have e1 < e2 as described in
the theorem. We need to know more than the obvious fact that two send events occurred namely
〈tg,m1〉, 〈tg,m2〉 were sent to R. One way to have more information is to remember the first event in the state.
Suppose we use a new Boolean state variable of S, called rdy, and we require that a send on l1 with tag tg
happens only if rdy = true and that after the send, rdy = false. Suppose we also stipulate in a frame
condition that only a receive on l2 sets ready to true, then we know that rdy when e1 = true, rdy after e1 =
false and rdy when e2 = true. So between e1 and e2, some event 3′ must happen at S that sets rdy to true.
But since only a rcv(l2, ack) can do so, then e′ must be the receive required by the specification.

This argument proves constructively that P ′ exists, and it is clear that the proof shows how to extend process S
namely add these clauses:

a : if rdy = true then

send(l1, 〈tg,m〉); rdy := false

r : rcv(l2, ack) effect rdy := true

only[a, r] affect rdy

QED

We could add a liveness condition that a send will occur by initializing rdy to true. If we want a live dialogue
we would need to extend R by

rcv(l1, 〈tg,m〉) effect send (l2, ack)

but our theorem did not require liveness.

4


