
CS 5860 Lecture Notes: A Theory of Events in First Order Logic (November 15, 2011)

1 Introduction

We have seen how to express a few protocols in the setting of computation by asynchronous message
passing, such as mutual exclusion, message acknowledgement, and collecting responses to liveness “pings”.
We also presented an intuitive “theory of events” at a finite number of locations loc1, . . . , locn which
send and receive messages. We stressed the idea that there is no global notion of “time” (no global clock)
and that we reason about time in terms of Lamport’s notion of causal order among events.

Now we will see how to express these concepts about events in first-order logic. Unlike the case for first-
order number theory where the domain of discourse D is the type of natural numbers, for a theory of
events, we need to subdivide the domain into several sorts. We start with the sort of events and locations
defined by decidable predicates E(x), Loc(x) on D. For convenience, we also use Bool(x) for Booleans
and Unit(x) for a sort with one object written as • ; we also have the natural numbers N(x) when we
want them. In the future we will need ID(x) for identifiers, Link(x) for communication links, Value(x) for
message values and so forth. All of these predicates simply divide D into separate sorts, all disjoint and
decidable, i.e. ∀x.(E(x)∨ ∼ E(x)), ∀x.(Loc(x)∨ ∼ Loc(x)),∀x.(N(x)∨ ∼ N(x)), etc. Later we will see that
type theory offers a richer and more flexible way to handle sorts and logic in a uniform way.

Recall the picture of our model of computation. This picture is sometimes called a message sequence
diagram.

Fig. 1. message sequence diagram

1



CS 5860 Lecture Notes: A Theory of Events in First Order Logic (November 15, 2011)

At each location loci events are linearly ordered, creating a sequential notion of time in which events are
totally ordered. It does not make sense to draw an arrow going back in time at a location, and causal order
proceeds downward as illustrated by the red links from loc1 to loc2 to loc3 to locn back to loc3 back
to loc1. We show slow processes at a location by the fact that events are widely spaced, not by directing
arrows backwards. Using backwards pointing arrows can lead to inadvertent temporal paradox.

We will capture properties of events caused by computational processing executing at each location, so we
also think of the locations as processes. These processes could be executing many threads of computation
distinguished by the kind of events.

Equality of events. We assume that equality on Locations and Events is decidable, thus
∀x, y.(E(x) & E(y)⇒ (x = y) ∨ ∼ (x = y)) ∀x, y.(Loc(x) & Loc(y)⇒ (x = y) ∨ ∼ (x = y))

Notation. It is convenient to write typed quantifiers to express the above concepts as well as many others,
e.g. ∀x, y : E.(x = y ∨ ∼ (x = y)) and ∀x : E.∀i : Loc.P (x, i) means ∀x, i.(E(x) & Loc(i)⇒ P (x, i)).

2 Event orderings

Axiom
∀x : E.∃y.(E(y) & Predecessor(x, y)) ∨ (Loc(y) & occurs at(x, y))

The realizer for this axiom is the term pred?(x), a computable term that defines a function on events
whose value is a pair < y, p > where y is in the domain D and p is either inl(*) or inr(*) 1

Given a particular event e at a location loci, the term pred?(x) will decide whether e is the initial event
at loci and if so, it will return < loci, inr(∗) >. Otherwise, pred?(e) will compute to the previous event
at the location

By examining the second component of < y, p > we can tell whether the result is an event, e.g. p is inl(x),
or a location.

If e is not the initial event, then we can examine the sequence of events at the location of e and find its
predecessor. To do this, we need to be able to compute the location of the event.

Axiom
∀x : E.∃y : Loc. Occurs at(x, y)

The realizer is a term loc(x) which for any event x computes the unique location of the event. For simplicity
we let loc(x) have value i rather than < i, ∗ >. The other option would be to have locof(x) =< i, ∗ >
and loc(x) = spread(locof(x); i, a.i). All events happen at a process location, and we postulate some
unspecified mechanism to find the location. In the formal mathematical model we simply define an event
to include its location, e.g. in one formal model from 2003 an event is a pair < i, t > where i is the location
and t is a discrete time step.

1 Recall that evidence for atomic predicates such as E(y) and Loc(y) is often just a token, *.

2



CS 5860 Lecture Notes: A Theory of Events in First Order Logic (November 15, 2011)

Next we need an axiom for finding the sender of an event. If the event is not a receive, then we associate
the unit value rather than the sender.

Axiom
∀x : E.∃y.(E(y) & Sender(x, y)) ∨ (Unit(x) & NotReceive(x))

The realizer is the term sender?(x). The term computes by finding the canonical form of the event. If it
has the form rcv(v) then we find the sender from the header or the channel (as with pred?). If x is not
a receive, then sender?(x) computes to the unit value •.

Now we will define x/y, also written as the binary relation Pred(x, y). First we define these functions and
predicates.

first?:E → Bool

first?(x) = spread(pred?(x);y, p. decide(p;l. false; r. true))

= let pred?(x) = (y, p) in if isl(p) then false

else true

sender?: E → E + Unit

rcv?(x) = decide(sender?(x); l. true; r. false)

= if isl(sender?(x)) then true else false.

First(x) iff first?(x) = true

Rcv(x) iff rcv?(x) = true

Pred(x,y) iff (¬ First(y) & x = pred(y))

∨ (Rcv(y) & x = sender(y))

thus on y such that ¬ First(y),

pred(y) = spread(pred?(y);x, p.x)

and on y such that rcv(y),

sender(y) = if isl(sender?(y)) then outl(y) .

We will now form the transitive closure of Pred(x, y), this will be Lamport’s causal order relation, x < y.
We will be able to prove ∀x, y : E.((x < y)∨ ∼ (x < y)), but we need more axioms.

Given a relation R(x, y) we define its transitive closure as follows. Define R(0)(x, y) iff R(x, y) and
R(n+1)(x, y) iff R(x, z) & R(n)(z, y) for some z.

R∗(x, y) iff ∃n : N.R(n)(x, y).

Using the notation x / y for Pred(x, y), here is the same definition. Define x /(0) y iff x / y and x /(n+1)

y iff ∃z.(x / z & z /(n) y.).

Say x /∗ y iff ∃n : N.x /(n) y.

Definition: Lamport’s causal order on events is Pred∗ (same as /*).

3



CS 5860 Lecture Notes: A Theory of Events in First Order Logic (November 15, 2011)

We will show that we can reason by induction on Pred∗. An elegant way to do this is by postulating that
Pred(x, y) is strongly well founded.

Axiom
Pred(x, y) is strongly well founded, i.e. there is a “choice sequence f” from E to N such that
∀e, e′ : E. Pred(e, e′)⇒ f(e) < f(e′).

We also need an axiom about pred(x).

Axiom
The predecessor function, pred, is injective (i.e. one-to-one).
∀e, e′ : E.(loc(e) = loc(e′) & ¬First(e) & ¬First(e′))⇒
(pred(e) = pred(e′))⇒ e = e′.

Theorem Pred∗(x, y), causal order, is strongly well founded.

4


