First-Order Logic

Raymond M. Smullyan

City University of New York
and Indiana University

Dover Publications, Inc. New York

Chapter II

Analytic Tableaux

We now describe an extremely elegant and efficient proof procedure for propositional logic which we will subsequently extend to first order logic, and which shall be basic to our entire study. This method, which we term analytic tableaux, is a variant of the "semantic tableaux" of Beth [1], or of methods of Hintikka [1]. (Cf. also Anderson and Belnap [1].) Our present formulation is virtually that which we introduced in [1]. Ultimately, the whole idea derives from Gentzen [1], and we shall subsequently study the relation of analytic tableaux to the original methods of Gentzen.

§ 1. The Method of Tableaux

We begin by noting that under any interpretation the following eight facts hold (for any formulas X, Y):

1) a) If $\sim X$ is true, then X is false.
b) If $\sim X$ is false, then X is true.
2) a) If a conjunction $X \wedge Y$ is true, then X, Y are both true.
b) If a conjunction $X \wedge Y$ is false, then either X is false or Y is false.
3) a) If a disjunction $X \vee Y$ is true, then either X is true or Y is true.
b) If a disjunction $X \vee Y$ is false, then both X, Y are false.
4) a) If $X \supset Y$ is true, then either X is false or Y is true.
b) If $X \supset Y$ is false, then X is true and Y is false.

These eight facts provide the basis of the tableau method.
Signed Formulas. At this stage it will prove useful to introduce the symbols " T ", " F " to our object language, and define a signed formula as an expression $T X$ or $F X$, where X is a (unsigned) formula. (Informally, we read " $T X$ " as " X is true" and " $F X$ " as " X is false".)

Definition. Under any interpretation, a signed formula $T X$ is called true if X is true, and false if X is false. And a signed formula $F X$ is called true if X is false, and false if X is true.

Thus the truth value of $T X$ is the same as that of X; the truth value of $F X$ is the same as that of $\sim X$.

By the conjugate of a signed formula we mean the result of changing " T " to " F " or " F " to " T " (thus the conjugate of $T X$ is $F X$; the conjugate of $F X$ is $T X$).

Illustration of the Method of Tableaux. Before we state the eight rules for the construction of tableaux, we shall illustrate the construction with an example.

Suppose we wish to prove the formula $[p \vee(q \wedge r)] \supset[(p \vee q) \wedge(p \vee r)]$. The following is a tableau which does this; the explanation is given immediately following the tableau:

$X \quad X$

Explanation. The tableau was constructed as follows. We see if we can derive a contradiction from the assumption that the formula $[p \vee(q \wedge r)] \supset[(p \vee q) \wedge(p \vee r)]$ is false. So our first line consists of this formula preceded by the letter " F ". Now, a formula of the form $X \supset Y$ can be false only if X is true and Y is false. (Cf. condition B_{4} of a Boolean valuation.) Thus (in the language of tableaux) $T X$ and $F Y$ are direct consequences of the (signed) formula $F(X \supset Y)$. So we write the lines (2) and (3) as direct consequences of line (1). Now let us look at line (2); it is of the form $T(X \vee Y)$ (where $X=p, Y=(q \wedge r)$.) We can not draw any direct conclusion about the truth value of X nor about the truth value of $Y ;$ all we can infer is that either $T X$ or $T Y$. So the tableau branches into two columns; one for each possibility. Thus line (2) branches into lines (4) and (5). Line (5), viz. $T(q \wedge r)$ immediately yields $T q$ and $T r$ as direct consequences; we thus have lines (6) and (7). Now look at (3). It is of the form $F(X \wedge Y)$. This means that either $F X$ or $F Y$. We also know that either (4) or (5) holds. So for each of the possibilities (4), (5) we have one of the two possibilities $F X, F$ Y. There are hence now four possibilities. So each of the branches (4), (5) branches again into the possibilities $F X$, F Y. More specifically, (4) branches to (8), (9), and (5) branches to (10), (11) (which are respectively the same as (8), (9)). Lines (12), (13) are direct consequences of (8); (14), (15) are direct consequences of (9); (16), (17) of (10); and (18), (19) of (11).

We now look at the leftmost branch and we shall see that (12) is a direct contradiction of (4) (i. e. it is the conjugate of (4)), so we put a cross
after (13) to signify that this branch leads to a contradiction. Similarly, (14) contradicts (4), so we "close" the branch leading to (15)-i.e. we put a cross after (15). The next branch is closed by virtue of (17) and (6). Finally, the rightmost branch is closed by virtue of (19) and (7). Thus all branches lead to a contradiction, so line (1) is untenable. Thus $[p \vee(q \wedge r)] \supset[(p \vee q) \wedge(p \vee r)]$ can never be false in any interpretation, so it is a tautology.

Remarks. (i) The numbers put to the left of the lines were only for the purpose of identification in the above explanations; we do not need them for the actual construction.
(ii) We could have closed some of our branches a bit earlier; lines (13), (15) are superfluous. In subsequent examples we shall close a branch as soon as a contradiction appears (a contradiction that is of the form of two formulas $F X, T X$).

Rules for the Construction of Tableaux. We now state all the rules in schematic form; explanations immediately follow. For each logical connective there are two rules; one for a formula preceded by " T ", the other for a formula preceded by " F ":

$$
\begin{aligned}
& \text { 1) } \frac{T \sim X}{F X} \quad \frac{F \sim X}{T X} \\
& \text { 2) } \frac{T(X \wedge Y)}{T X} \quad \frac{F(X \wedge Y)}{F X \mid F Y} \\
& \text { TY } \\
& \text { 3) } \frac{T(X \vee Y)}{T X \mid T Y} \quad \frac{F(X \vee Y)}{F X} \\
& \text { 4) } \begin{array}{c}
\frac{T(X \supset Y)}{F X \mid T Y} \quad \frac{F(X \supset Y)}{T X} \\
F Y
\end{array}
\end{aligned}
$$

Some Explanations. Rule 1) means that from $T \sim X$ we can directly infer $F X$ (in the sense that we can subjoin $F X$ to any branch passing through $T \sim X$) and that from $F \sim X$ we can directly infer $T X$. Rule 2) means that $T(X \wedge Y)$ directly yields both $T X, T Y$, whereas $F(X \wedge Y)$ branches into $F X, F Y$. Rules 3) and 4) can now be understood analogously.

Signed formulas, other than signed variables, are of two types; (A) those which have direct consequences (viz. $F \sim X, T \sim X, T(X \wedge Y)$, $F(X \vee Y), F(X \supset Y)$); (B) those which branch (viz. $F(X \wedge Y), T(X \vee Y)$, $T(X \supset Y))$.

It is practically desirable in constructing a tableau, that when a line of type (A) appears on the tableau, we simultaneously subjoin its consequences to all branches which pass through that line. Then that line need never be used again. And in using a line of type (B), we divide all branches which pass through that line into sub-branches, and the line need never be used again. For example, in the above tableau, we use (1) to get (2) and (3), and (1) is never used again. From (2) we get (4) and (5), and (2) is never used again. Line (3) yields (8), (9), (10), (11) and (3) is never used again, etc.

If we construct a tableau in the above manner, it is not difficult to see, that after a finite number of steps we must reach a point where every line has been used (except of course, for signed variables, which are never used at all to create new lines). At this point our tableau is complete (in a precise sense which we will subsequently define).

One way to complete a tableau is to work systematically downwards i.e. never to use a line until all lines above it (on the same branch) have been used. Instead of this procedure, however, it turns out to be more efficient to give priority to lines of type (A)-i.e. to use up all such lines at hand before using those of type (B). In this way, one will omit repeating the same formula on different branches; rather it will have only one occurrence above all those branch points.

As an example of both procedures, let us prove the formula $[p \supset(q \supset r)] \supset[(p \supset q) \supset(p \supset r)]$. The first tableau works systematically downward; the second uses the second suggestion. For the convenience of the reader, we put to the right of each line the number of the line from which it was inferred.

First Tableau
(1) $F[p \supset(q \supset r)] \supset[(p \supset q) \supset(p \supset r)]$
(2) $T p \supset(q \supset r)$ (1)
(3) $F(p \supset q) \supset(p \supset r)$ (1)
(4) $F p$ (2)
(6) $T(p \supset q)$ (3)
(7) $F(p \supset r)(3)$

(10) $F p(6)$	(11) $T q(6)$
(12) $T p(7)$	(13) $T p(7)$
X	X

(5) $T(q \supset r)(2)$
(8) $T(p \supset q)(3)$
(9) $F(p \supset r)(3)$

(14) $F q(5)$	(15) $\operatorname{Tr}(5)$		
(16) $F p(8)$	(17) $T q(8)$	(18) $F p(8)$	$(19) T q(8)$
(20) $T p(9)$	X	(21) $T p(9)$	$(22) T p(9)$
X		X	$(23) F r(9)$
		X	

Second Tableau

$$
\begin{aligned}
& \text { (1) } F[p \supset(q \supset r)] \supset[(p \supset q) \supset(p \supset r)] \\
& \text { (2) } T p \supset(q \supset r)(1) \\
& \text { (3) } F(p \supset q) \supset(p \supset r)(1) \\
& \text { (4) } T(p \supset q)(3) \\
& \text { (5) } F(p \supset r)(3) \\
& \text { (6) } T p(5) \\
& \text { (7) } F r(5) \\
& \text { (8) } F p(2) \left\lvert\, \begin{array}{ll}
\text { (9) } T(q \supset r)(2) \\
X & (10) F p(4) \\
X & \text { (11) } T q(4) \\
\text { (12) } F q(9) \mid(13) T r(9) \\
X & X
\end{array}\right.
\end{aligned}
$$

It is apparent that Tableau (2) is quicker to construct than Tableau (1), involving only 13 rather than 23 lines.

As another practical suggestion, one might put a check mark to the right of a line as soon as it has been used. This will subsequently aid the eye in hunting upward for lines which have not yet been used. (The check marks may be later erased, if the reader so desires.)

The method of analytic tableaux can also be used to show that a given formula is a truth functional consequence of a given finite set of formulas. Suppose we wish to show that $X \supset Z$ is a truth-functional consequence of the two formulas $X \supset Y, Y \supset Z$. We could, of course, simply show that $[(X \supset Y) \wedge(Y \supset Z)] \supset(X \supset Z)$ is a tautology. Alternatively, we can construct a tableau starting with

$$
\begin{aligned}
& T(X \supset Y), \\
& T(Y \supset Z), \\
& F(X \supset Z)
\end{aligned}
$$

and show that all branches close.
In general, to show that Y is truth-functionally implied by X_{1}, \ldots, X_{n}, we can construct either a closed analytic tableau starting with $F\left(X_{1} \wedge \ldots \wedge X_{n}\right) \sqsupset Y$, or one starting with

$$
\begin{aligned}
& T X_{1} \\
& \vdots \\
& \dot{T} X_{n} \\
& F Y
\end{aligned}
$$

Tableaux using unsigned formulas. Our use of the letters " T " and " F ", though perhaps heuristically useful, is theoretically quite dispen-sable-simply delete every " T " and substitute " \sim " for " F ". (In which case, incidentally, the first half of Rule 1) becomes superfluous.) The rules then become:

$$
\begin{array}{ll}
\text { 1) } \begin{array}{ll}
\frac{\sim \sim X}{X} \\
\text { 2) } \frac{X \wedge Y}{X} & \frac{\sim(X \wedge Y)}{\sim X \mid \sim Y} \\
Y & \\
\text { 3) } \begin{array}{rr}
\frac{X \vee Y}{X \mid Y} & \frac{\sim(X \vee Y)}{\sim X} \\
\text { 4) } \frac{X \supset Y}{\sim X \mid Y} & \frac{\sim(X \supset Y)}{X} \\
&
\end{array}
\end{array} \begin{aligned}
\sim Y
\end{aligned}
\end{array}
$$

In working with tableaux which use unsigned formulas, "closing" a branch naturally means terminating the branch with a cross, as soon as two formulas appear, one of which is the negation of the other. A tableau is called closed if every branch is closed.

By a tableau for a formula X, we mean a tableau which starts with X. If we wish to prove a formula X to be a tautology, we construct a tableau not for the formula X, but for its negation $\sim X$.

A Unifying Notation. It will save us considerable repetition of essentially the same arguments in our subsequent development if we use the following unified notation which we introduced in [2].

We use the letter " α " to stand for any signed formula of type A-i.e. of one of the five forms $T(X \wedge Y), F(X \vee Y), F(X \supset Y), T \sim X, F \sim X$. For every such formula α, we define the two formulas α_{1} and α_{2} as follows:

$$
\begin{aligned}
& \text { If } \alpha=T(X \wedge Y), \text { then } \alpha_{1}=T X \text { and } \alpha_{2}=T Y . \\
& \text { If } \alpha=F(X \vee Y), \text { then } \alpha_{1}=F X \text { and } \alpha_{2}=F Y . \\
& \text { If } \alpha=F(X \supset Y), \text { then } \alpha_{1}=T X \text { and } \alpha_{2}=F Y . \\
& \text { If } \alpha=T \sim X, \quad \text { then } \alpha_{1}=F X \text { and } \alpha_{2}=F X . \\
& \text { If } \alpha=F \sim X, \quad \text { then } \alpha_{1}=T X \text { and } \alpha_{2}=T X .
\end{aligned}
$$

For perspicuity, we summarize these definitions in the following table:

α	α_{1}	α_{2}
$T(X \wedge Y)$	$T X$	$T Y$
$F(X \vee Y)$	$F X$	$F Y$
$F(X \supset Y)$	$T X$	$F Y$
$T \sim X$	$F X$	$F X$
$F \sim X$	$T X$	$T X$

We note that under any interpretation, α is true iff α_{1}, α_{2} are both true. Accordingly, we shall also refer to an α as a formula of conjunctive type.

We use " β " to stand for any signed formula of type B-i.e. one of the three forms $F(X \wedge Y), T(X \vee Y), T(X \supset Y)$. For every such formula β, we define the two formulas β_{1}, β_{2} as in the following table:

β	β_{1}	β_{2}
$F(X \wedge Y)$	$F X$	$F Y$
$T(X \vee Y)$	$T X$	$T Y$
$T(X \supset Y)$	$F X$	$T Y$

In any interpretation, β is true iff at least one of the pair β_{1}, β_{2} is true. Accordingly, we shall refer to any β-type formula as a formula of disjunctive type.

We shall sometimes refer to α_{1} as the first component of α and α_{2} as the second component of α. Similarly, for β.

By the degree of a signed formula $T X$ or $F X$ we mean the degree of X. We note that α_{1}, α_{2} are each of lower degree than α, and β_{1}, β_{2} are each of lower degree than β. Signed variables, of course, are of degree 0 .

We might also employ an α, β classification of unsigned formulas in an analogous manner, simply delete all " T ", and replace " F " by " \sim ". The tables would be as follows:

α	α_{1}	α_{2}
$X \wedge Y$	X	Y
$\sim(X \vee Y)$	$\sim X$	$\sim Y$
$\sim(X \supset Y)$	X	$\sim Y$
$\sim \sim X$	X	X

Summary Rule A $\frac{\alpha}{\frac{\alpha}{\alpha_{1}}}$

β	β_{1}	β_{2}
$\sim(X \wedge Y)$	$\sim X$	$\sim Y$
$X \vee Y$	X	Y
$X \supset Y$	$\sim X$	Y

exactly one of X, \bar{X} is in S) is a truth set. Show that any upward closed set satisfying (0) is a truth set.

Precise Definition of Tableaux. We have deliberately waited until the introduction of our unified notation in order to give a precise definition of an analytic tableau, since the definition can now be given more compactly.

Definition. An analytic tableau for X is an ordered dyadic tree, whose points are (occurrences of formulas, which is constructed as follows. We start by placing X at the origin. Now suppose \mathscr{T} is a tableau for X which has already been constructed; let Y be an end point. Then we may extend \mathscr{T} by either of the following two operations.
(A) If some α occurs on the path P_{Y}, then we may adjoin either α_{1} or α_{2} as the sole successor of Y. (In practice, we usually successively adjoin α_{1} and then α_{2}.)
(B) If some β occurs on the path P_{Y}, then we may simultaneously adjoin β_{1} as the left successor of Y and β_{2} as the right successor of Y.

The above inductive definition of tableau for X can be made explicit as follows. Given two ordered dyadic trees \mathscr{T}_{1} and \mathscr{T}_{2}, whose points are occurrences of fọmulas, we call \mathscr{T}_{2} a direct extension of \mathscr{T}_{1} if \mathscr{T}_{2} can be obtained from \mathscr{T}_{1} by one application of the operation (A) or (B) above. Then \mathscr{T} is a tableau for X iff there exists a finite sequence $\left(\mathscr{T}_{1}, \mathscr{T}_{2}, \ldots, \mathscr{T}_{n}=\mathscr{T}\right)$ such that \mathscr{T}_{1} is a 1-point tree whose origin is X and such that for each $i<n, \mathscr{T}_{i+1}$ is a direct extension of \mathscr{T}_{i}.

To repeat some earlier definitions (more or less informally stated) a branch θ of a tableau for signed (unsigned) formulas is closed if it contains some signed formula and its conjugate (or some unsigned formula and its negation, if we are working with unsigned formulas.) And \mathscr{T} is called closed if every branch of \mathscr{T} is closed. By a proof of (an unsigned formula) X is meant a closed tableau for $F X$ (or for $\sim X$, if we work with unsigned formulas.)

Exercise. By the tableau method, prove the following tautologies:
(1) $q \supset(p \supset q)$
(2) $((p \supset q) \wedge(q \supset r)) \supset(p \supset r)$
(3) $((p \supset q) \wedge(p \supset r)) \supset(p \supset(q \wedge r))$
(4) $[((p \supset r) \wedge(q \supset r)) \wedge(p \vee q)] \supset r$
(5) $\sim(p \wedge q) \supset(\sim p \vee \sim q)$
(6) $\sim(p \vee q) \supset(\sim p \wedge \sim q)$
(7) $(\sim p \vee \sim q) \supset \sim(p \wedge q)$
(8) $(p \vee(q \wedge r)) \supset((p \vee q) \wedge(p \vee r))$

§ 2. Consistency and Completeness of the System

Consistency. It is intuitively rather obvious that any formula provable by the tableau method must be a tautology-equivalently, given any closed tableau, the origin must be unsatisfiable. This intuitive conviction can be justified by the following argument.

Consider a tableau \mathscr{T} and an interpretation v_{0} whose domain includes at least all the variables which occur in any point of \mathscr{T}. Let us call a branch θ of \mathscr{T} true under v_{0} if every term of θ is true under v_{0}. And we shall say that the tableau \mathscr{T} (as a whole) is true under v_{0} iff at least one branch of \mathscr{T} is true under v_{0}.

The next step is to note that if a tableau \mathscr{T}_{2} is an immediate extension of \mathscr{T}_{1}, then \mathscr{T}_{2} must be true in every interpretation in which \mathscr{T}_{1} is true. For if \mathscr{T}_{1} is true, it must contain at least one true branch θ. Now \mathscr{T}_{2} was obtained from \mathscr{T}_{1} by adding one or two successors to the end point of some branch θ_{1} of \mathscr{T}_{1}; if θ_{1} is distinct from θ, then θ is still a branch of \mathscr{T}_{2}, hence \mathscr{T}_{2} contains the true branch θ, so \mathscr{T}_{2} is true. On the other hand, suppose θ is identical with θ_{1}-i. e. suppose θ is the branch of \mathscr{T}_{1} which was extended in \mathscr{T}_{2}. If θ was extended by operation (A), then some α appears as a term in θ, and θ has been extended either to $\left(\theta_{1}, \alpha_{1}\right)$ or to $\left(\theta_{1}, \alpha_{2}\right)$, so either $\left(\theta_{1}, \alpha_{1}\right)$ or $\left(\theta_{1}, \alpha_{2}\right)$ is a branch of \mathscr{F}_{2}. But α_{1}, α_{2} are both true since α is, hence \mathscr{T}_{2} contains the true branch $\left(\theta_{1}, \alpha_{1}\right)$ or $\left(\theta_{1}, \alpha_{2}\right)$. If θ was extended by operation (B), then some β occurs in θ and both $\left(\theta_{1}, \beta_{1}\right)$ and $\left(\theta_{1}, \beta_{2}\right)$ are branches of \mathscr{T}_{2}. But since β is true, then at least one of β_{1}, β_{2} is true, hence one of the branches $\left(\theta_{1}, \beta_{1}\right)$ or $\left(\theta_{1}, \beta_{2}\right)$ of \mathscr{T}_{2} is true, so again \mathscr{T}_{2} is true.

We have thus shown that any immediate extension of a tableau which is true (under a given interpretation) is again true (under the given interpretation). From this it follows by mathematical induction that for any tableau \mathscr{T}, if the origin is true under a given interpretation v_{0}, then \mathscr{T} must be true under v_{0}. Now a closed tableau \mathscr{T} obviously cannot be true under any interpretation, hence the origin of a closed tableau cannot be true under any interpretation-i.e. the origin of any closed tableau must be unsatisfiable. From this it follows that every formula provable by the tableau method must be a tautology. It therefore further follows that the tableau method is consistent in the sense that no formula and its negation are both provable (since no formula and its negation can both be tautologies).

Completeness. We now consider the more delicate converse situation: Is every tautology provable by the method of tableaux? Stated otherwise, if X is a tautology, can we be sure that there exists at least one closed tableau starting with $F X$? We might indeed ask the following bolder question: If X is a tautology, then will every complete tableau for $F X$
close? An affirmative answer to the second question would, of course, be even better than an affirmative answer to the first, since it would mean that any single completed tableau \mathscr{T} for $F X$ would decide whether X is a tautology or not.

Before the reader answers the question too hastily, we should consider the following. If we delete some of the rules for the construction of tableaux, it will still be true that a closed tableau for $F X$ always indicates that X is a tautology. But if we delete too many of the rules, then we may not have left enough power to always derive a closed tableau for $F X$ whenever X is a tautology. (For example, if we delete the first half of the conjunction rule, then it would be impossible to prove the tautology $(p \wedge q) \supset p$, though it would still be possible to prove $p \supset[q \supset(p \wedge q)]$. If we delete the second half but retain the first half, then we could prove the first tautology above, but not the second.) The question, therefore, is whether our present set of rules is sufficient to do this. Our present purpose is to show that they are sufficient.

We shall give the proof for tableaux using signed formulas (the modifications for tableaux using unsigned formulas are obvious-or indeed the result for tableaux for unsigned formulas follows directly from the result for tableaux with signed formulas.)

We are calling a branch θ of a tableau complete if for every α which occurs in θ, both α_{1} and α_{2} occur in θ, and for every β which occurs in θ, at least one of β_{1}, β_{2} occurs in θ. We call a tableau \mathscr{T} completed if every branch of \mathscr{T} is either closed or complete. We wish to show that if \mathscr{T} is any completed open tableau (open in the sense that at least one branch is not closed), then the origin of \mathscr{T} is satisfiable. More generally, we shall show

Theorem 1. Any complete open branch of any tableau is (simultaneously) satisfiable.

We shall actually prove something stronger. Suppose θ is a complete open branch of a tableau \mathscr{T}; let S be the set of terms of θ. Then the set S satisfies the following three conditions (for every α, β):
H_{0} : No signed variable and its conjugate are both in S^{1}).
H_{1} : If $\alpha \in S$, then $\alpha_{1} \in S$ and $\alpha_{2} \in S$.
H_{2} : If $\beta \in S$, then $\beta_{1} \in S$ or $\beta_{2} \in S$.
Sets S-whether finite or infinite-obeying conditions H_{0}, H_{1}, H_{2} are of fundamental importance-we shall call them Hintikka sets (after Hintikka who studied their properties explicitly). We shall also refer to

[^0]Hintikka sets as sets which are saturated downwards. We shall also call any finite or denumerable sequence θ a Hintikka sequence if its set of terms is a Hintikka set.

Let us pause for a moment to compare the notion of downward saturation with that of saturation discussed earlier (cf. the preceding section on truth sets re-visited). The definition of a saturated set differs from that of a Hintikka set in that in H_{1}, H_{2} "if" is replaced by "if and only if", and H_{0} is strengthened to condition (0). So every saturated set is obviously also a Hintikka set. But a Hintikka set need not be saturated (e.g. any set of signed variables which contains no signed variable and its conjugate vacuously satisfies H_{1}, H_{2}, but such a set is certainly not saturated.)

Theorem 1 is substantially to the effect that every finite Hintikka set S is satisfiable. The finiteness of S, however, is not needed in the proof (nor does it even simplify the proof), so we shall prove

Hintikka's Lemma. Every downward saturated set S (whether finite or infinite) is satisfiable.

We remark that Hintikka's lemma is equivalent to the statement that every Hintikka set can be extended to a (i.e. is a subset of some) saturated set. We remark that Hintikka's lemma also holds for sets of unsigned formulas (where by a Hintikka set of unsigned formulas we mean a set S satisfying H_{1}, H_{2} and in place of H_{0}, the condition that no variable and its negation are both elements of S).

Proof of Hintikka's Lemma. Let S be a Hintikka set. We wish to find an interpretation in which every element of S is true. Well, we assign to each variable p, which occurs in at least one element of S, a truth value as follows:
(1) If $T p \in S$, give p the value true.
(2) If $F p \in S$, give p the value false.
(3) If neither $T p$ nor $F p$ is an element of S, then give p the value true or false at will (for definiteness, let us suppose we give it the value true.)

We note that the directions (1), (2) are compatible, since no $T p$ and $F p$ both occur in S (by hypothesis H_{0}). We now show that every element of S is true under this interpretation. We do this by induction on the degree of the elements.

It is immediate that every signed variable which is an element of S is true under this interpretation (the interpretation was constructed to insure just this). Now consider an element X of S of degree greater than 0 , and suppose all elements of S of lower degree than X are true. We wish to show that X must be true. Well, since X is of degree greater than zero, it must be either some α or some β.

Case 1. Suppose it is an α. Then α_{1}, α_{2} must also be in $S\left(\right.$ by $\left.H_{1}\right)$. But α_{1}, α_{2} are of lower degree than α. Hence by inductive hypothesis α_{1} and α_{2} are both true. This implies that α must be true.

Case 2. Suppose X is some β. Then at least one of β_{1}, β_{2} is in $S\left(\right.$ by $\left.H_{2}\right)$. Whichever one is in S, being of lower degree than β, must be true (by inductive hypothesis). Hence β must be true. This concludes the proof.

Remark. If we hadn't used the unifying " α, β " notation, we would have had to analyze eight cases rather than two.

Having proved Hintikka's lemma, we have, of course, also proved Theorem 1. This in turn implies

Theorem 2. (Completeness Theorem for Tableaux)
(a) If X is a tautology, then every completed tableau starting with $F X$ must close.
(b) Every tautology is provable by the tableau method.

To derive statement (a) from Theorem 1, suppose \mathscr{T} is a complete tableau starting with $F X$. If \mathscr{T} is open, then $F X$ is satisfiable (by Theorem 1), hence X cannot be a tautology. Hence if X is a tautology then \mathscr{T} must be closed.

Let us note that for S a finite Hintikka set, the proof of Hintikka's lemma effectively gives us an interpretation which satisfies S. Therefore, if X is not a tautology, then a completed tableau for $F X$ provides us with a counterexample to X (i.e. an interpretation in which X is false).

Example. Let X be the formula $(p \vee q) \supset(p \wedge q)$. Let us construct a completed tableau for FX:
(1) $F(p \vee q) \supset(p \wedge q)$
(2) $T(p \vee q)(1)$
(3) $F(p \wedge q)(1)$
(4) $T p(2)$
(6) $\underset{X}{F p(3)} \mid$ (7) $F q(3)$
(5) $T q(2)$
(8) $F p$ (3)

This tableau has two open branches. Let us consider the branch whose end point is (7). Acording to the method of Hintikka's proof, if we declare p true and q false, we have an interpretation which satisfies all lines of this branch. The reader can verify this by successively showing that (3), (2), (1) are true under this interpretation. Hence $F(p \vee q) \supset(p \wedge q)$ is true under this interpretation, which means $(p \vee q) \supset(p \wedge q)$ is false under this interpretation. Likewise the open branch terminating in (8) gives us another interpretation (viz. q is true, p is false) which is a counterexample to X.

Tableaux for Finite Sets. If S is a finite set $\left\{X_{1}, \ldots, X_{n}\right\}$, by a tableau for S is meant a tableau starting with

$$
\begin{gathered}
X_{1} \\
X_{2} \\
\vdots \\
X_{n}
\end{gathered}
$$

and then continued using Rules A, B.
We leave it to the reader to modify our previous arguments for tableaux for single formulas, and prove:

Theorem. A finite set S is unsatisfiable iff there exists a closed tableau for S.

We shall consider tableaux for infinite sets in a subsequent chapter.
Exercise. There is another way of proving the completeness theorem which does not use Hintikka's lemma.

Show (without use of the completeness theorem): (1) If there exists a closed tableau for $S \cup\left\{\alpha_{1}, \alpha_{2}\right\}$ then there exists a closed tableau for $S \cup\{\alpha\}$; (2) if there exist closed tableaux for $S \cup\left\{\beta_{1}\right\}$ and for $S \cup\left\{\beta_{2}\right\}$, then there exists a closed tableau for $S \cup\{\beta\}$; (3) if all elements of S are of degree 0 , and S is unsatisfiable, then there exists a closed tableau for S (trivial!).

Now define the degree of a finite set S to be the sum of the degrees of the elements of S. Using (1), (2), (3) above, show by induction on the degree of S that if S is unsatisfiable, then there exists a closed tableau for S.

Atomically Closed Tableaux. Let us call a tableau atomically closed if every branch contains some atomic element and its conjugate. [By an atomic element we mean a propositional variable, if we are working with unsigned formulas, and a signed propositional variable if we are working with signed formulas. If we are working with unsigned formulas, then by an atomically closed tableau we mean a tableau in which every branch contains some propositional variable and its negation.]

Suppose we construct a completed tableau \mathscr{T} for a set S, and declare a branch "closed" only if it is atomically closed. Now suppose \mathscr{T} contains an (atomically) open branch B. Then the set of elements of B is still a Hintikka set (because condition H_{0} requires only that the set contain no atomic elements and its conjugate), hence is satisfiable (by Hintikka's lemma). We thus have:

Theorem. If S is unsatisfiable, then there exists an atomically closed tableau for S.

Corollary. If there exists a closed tableau for S, then there exists an atomically closed tableau for S.

[^0]: ${ }^{1}$) Indeed no signed formula and its conjugate appear in S, but we do not need to involve this stronger fact.

