
52 V. First-Order Analytic Tableaux

Exercise 2. Give an example of a sentence which is truth-functionally
satisfiable but not first order satisfiable.

Exercise 3. [Important!] Show that a quantifier-free sentence (i.e.
a sentence with no quantifiers) which is truth-functionally satisfiable
must also be first order satisfiable.

Show therefore that if a quantifier-free sentence is valid, then it must
be a tautology [this is a semantic version of Hilbert's first ~:-theorem].
More generally, show that any S (finite or infinite) of quantifier-free
sentences which is (simultaneously) truth-functionally satisfiable is also
(simultaneously) first order satisfiable [Hint: Take any Boolean valuation
of E which satisfies S. This Boolean valuation induces a certain inter
pretation I of the predicates of S (in a manner we have discussed earlier).
Show that every element X of Sis true under this interpretation I (use
induction on the degree of X)].

Chapter V

First-Order Analytic Tableaux

§ 1. Extension of Our Unified Notation

We use "ex", "fJ" exactly as we did for propositional logic (only now
construing "formula" to mean "closed formula of quantification theory").
We now add two more categories y and() as follows.

For the moment let us work with unsigned formulas. Then "y" shall
denote any formula of one of the two forms (Vx)A, ~(3x)A, and for
any parameter a, by y(a) we mean A~, ~A~ respectively.

We use"()" to denote any formula of one of the two forms (3x)A,
~(V x)A, and by b(a) we respectively mean A~, ~(A~). We refer to
y-formulas as of universal type, and b-formulas as of existential type.

In working with signed formulas, y shall be any signed formula of
one of the forms T(V x)A, F(3x)A, and y(a) is respectively T A~, FA~.

And() shall be any signed formula of one of the forms T(3x)A, F(V x)A,
and b(a) is respectively T A~, FA~.

In considering sentences with constants in the universe U, we use y,
() in the same manner and for any kE U, we define y(k), b(k) similarly.

Under any interpretation in a universe U, the following facts clearly
hold:

F 1 : ex is true iff ex1 , ex2 are both true.
F 2 : fJ is true iff at least one of fJ 1 , fJ 2 is true.
F 3 : y is true iff y(k) is true for every kE U.
F 4 : ()is true iff b(k) is true for at least one kE U.

§ 2. Analytic Tableaux for Quantification Theory 53

As consequences of the above facts, we have the following laws
concerning satisfiability, of which G1,G2 ,G3 are immediate and G

4
(which the reader should look at most carefully) we will prove. In these
laws, S is any set of formulas perhaps with parameters (but no other
constants), and likewise with ex, fJ, y, b. And "satisfiable" means first
order satisfiable.

G1 : If Sis satisfiable, and exES, then {S,ex1 ,ex2 } is satisfiable.
G2 : If Sis satisfiable and {JES, then at least one of the two sets

{S,{Jt}, {S,fJ2 } is satisfiable.
G3 : If S is satisfiable and yES, then, for every parameter a, the set

{ S, y(a)} is satisfiable.
G 4 : If S is satisfiable and () E S, and if a is any parameter which occurs

in no element of S, then { S, b(a)} is satisfiable.
We leave the verification orG1 ,G2 ,G3 to the reader; we shall now

prove the very critical law G4 .

By hypothesis, there is an interpretation I of all predicates of S in
some universe U and a mapping cp of all parameters of S into elements
of U such that for every AES, the U-sentence A"' is true under I. In
particular, b"' is true under I . The sentence b"' is a sentence with no
parameters but with constants in U and it is a sentence of existential
type, call it b1 . Since b1 is true under I , then (by F 4), there must be at
least one element k of U such that b1 (k) is true under I. Now cp is defined
on all parameters of {S,b(a)}, except for the parameter a. We extend cp
by defining cp(a) = k-call this extension cp*. Then cp* is defined on all
parameters of {S,b(a)}. Clearly, for every AES,A"'* is the same expression
as A"', so A"'* is true under I . And [b(a)]"'* is the same sentence as b1(k),
hence [b(a)]"'* is true under I. Hence, for every AE{S,b(a)},A"'* is true
under I. Thus { S, b(a)} is satisfiable.

§ 2. Analytic Tableaux for Quantification Theory

Whether we work with signed formulas or not, our tableaux rules
for first order logic are the following four:

Rule A: RuleB: _fJ_
· fJ1 l fJ2

Rule C: y(a), where a is any parameter.

(j
Rule D : b(a), where a is a new parameter.

54 V. First-Order Analytic Tableaux

Rules A, B are the same as in propositional logic. The new rules C, D
(for eliminating quantifiers), are direct rules; the only one of the four
rules which is a branching rule is Rule B. In signed notation, Rules C, D
are as follows:

T('v'x)A F(3x)A
RuleC:

TA~ FA~

T(3x)A . .
Rule D: , with proviso (that a IS new)

TA~

F('v' x)A .
--- , with same proviso
FA~

Using unsigned formulas, our quantificational rules are:

('v'x)A ~(3x)A
Rule C:

A~ ~A~

(3x)A . .
Rule D: --, With proviso

A~

~('v'x)A . .
---, With prOVISO
~A~

Discussion concerning Rule D. This rule is a formalization of the
following informal argument used constantly in mathematics. Suppose
in the course of an argument we have proved that there exists an element x
having a certain property P-i. e. we have proved the statement (3 x) P x.
We then say, "let a be such an x" and we write P a. Of course, we are not
asserting that P holds for every a, but just for at least one. If we subsequently
show that for another property Q, there exists an x such that Q x, we
cannot legitimately say "let a be such an x", because we have already
committed the symbol "a" to being the name of some x such that Px
and we do not know that there is any single x having both the properties P
and Q. Thus we take a new parameter b, and say "let b be such an x",
and we write Q b. This is the reason for the proviso in Rule D.

Actually we can liberalize Rule D by replacing the clause "providing
a is new", by "providing a is new, or else a has not been previously
introduced by Rule D, and does not occur in <5, and no parameter of <5
has been previously introduced by Rule D". Under this liberalization,
proofs can sometimes be shortened (cf. Example 2 below.)

§ 2. Analytic Tableaux for Quantification Theory 55

The idea behind this liberalization is this. Suppose in the course
of an argument we prove a sentence ('v' x) Px (which is of type y). Then
we conclude Pa. We have not really committed "a" to being the name
of any particular individual; P a holds for every value of a. So if we
subsequently prove a sentence (3 x) Q x, we can legitimately say, "let a
be such an x", and for the same value of a, P a will also hold.

The above discussion is but an informal foreshadowing of a precise
argument showing the consistency of the tableau method for first order
logic. Actually, if we stick to the strict version of Rule D, the consistency
is almost immediate from the conditions G1, G2 , G3 , G4 of satisfiability
which we stated in § 1.

For suppose 8 is a branch of a tableau and that 8 is satisfiable. If we
extend 8 by rule A, C or D then the resulting extension is again satisfi
able (by G1, G3 , G4 , respectively). If we simultaneously extend 8 to
2 branches 81, 82 by one application of rule B, then at least one of 81, 82
is again satisfiable (by G2). Thus any immediate extension of a tableau
which is satisfiable (in the sense that at least one of its branches is satisfi
able) is again satisfiable. Therefore (by induction) if the origin of a
tableau is satisfiable, then at least one branch of the tableau is satisfi
able and hence open. Therefore if a tableau closes, then the origin is
indeed unsatisfiable-stated otherwise, every provable sentence is valid.

The precise justification of the liberalized version of Rule D is a bit
more delicate; we shall return to this later. Meanwhile we wish to get
on with some concrete working familarity with First Order Tableaux.

Example 1. The following tableau is a proof of the sentence

('v'x) [Px :::::> Q x] :::::> [('v'x)Px :::::> ('v'x)Qx]

(1) ~[('v'x)[Px :::::> Qx] :::::> [('v'x)Px :::::> ('v'x)Qx]J

(2) ('v'x)(Px :::::> Qx) (1)
(3) ~ [('v' x)Px :::::> ('v' x) Qx] (1)
(4) ('v'x)Px (3)
(5) ~('v' x)Qx (3)
(6) ~Qa (5)
(7) Pa (4)
(8) Pa:::::>Qa (2)
(9) ~Pa (8)

I
(10) Qa (8)

X X

Example 2. We wish to give 2 different proofs of the sentence
(3y) [(3x) P x :::::> P y]. The first proof uses the strict form of RuleD, and
the second (which is shorter) uses the liberalized version of Rule D:

56 V. First-Order Analytic Tableaux

Proof 1. (1) F(3y)[(3x)Px=>Py]

(2) F(3x)Px :::> Pa (1)

(3) T(3x) Px (2)
(4) FPa (2)
(5) TPb (3)
(6) F(3x)Px=>Pb (1)

(7) FPb
X

Proof2. (1) F(3y) [(3x)Px => Py]

(2) F(3x)Px :::> Pa (1)

(3) T(3x)Px (2)
(4) FPa (2)
(5) TPa (3)

X

Exercises. Prove the following formulas:

('if y) ['if x) P x :::> P y]

('ifx)Px=>(3x)Px

(3y)[Py=>('ifx)Px]

~(3y)Py => [('ify) ((3x)Px => Py}]

(3x)Px :::> (3y)Py

('ifx) [PxAQx] = ('ifx)PxA('ifx)Qx]

[('ifx)Pxv ('ifx)Qx] :::> ('ifx) [PxvQx]
(the converse is not valid!)

(3x)(Pxv Qx)=((3x)Pxv (3x)Qx)

(3x)(P x A Q x) :::> ((3x)Px A (3x)Q x)
(the converse is not valid).

In the next group, C is any closed formula-or at least the variable x
does not occur free in it:

('if x)[P x v CJ =[('if x)Px v C]
(3x)[PxA CJ = [(3x)Px A CJ

(3x)C = C

('if x) C = C

(3x) [C :::> Px] = [C =>(3x)Px]

(3x)[Px => CJ = [('ifx)Px :::> CJ
('ifx)[C :::> Px] = [C => ('ifx)Px]

('ifx) [Px :::> CJ = [(3x)Px :::> CJ

§ 3. The Completeness Theorem

Show (H A K) :::> L , where
H =('if x) ('if y) [Rxy :::> Ryx] (R is symmetric)
K=('ifx)('if y)('ifz) [(Rxy A R yz) :::> Rxz] (R is transitive)
L =('if x) ('if y) [R x y :::> R x x] (R is reflex ive on its domain of

definition).

57

For a hard one, try the following exercise (taken from Quine [1]):
Show (A A B)=> C, where

A =('ifx) [(Fx A Gx) :::> Hx] :::> (3x) [Fx A ~Gx]
B =('if x) [F x :::> G x] v ('if x) [F x :::> H x]
C=('ifx)[i Fx A Hx)=>Gx]=> (3 x)[Fx A Gx A ~Hx]

§ 3. The Completeness Theorem

Now we turn to the proof of one of the major results in quantifica
tion theory: Every valid sentence is provable by the tableau method.

This is a form of Godel's famous completeness theorem. Actually
GOdel proved the completeness of a different formalization of Quanti
fication Theory, but we shall later show how the completeness of the
tableau method implies the completeness of the more conventional for
malizations. The completeness proof we now give is along the lines of
Beth [1] or Hintikka [1]-and also Anderson and Belnap [1].

Let us first briefly review our completeness proof for tableaux in
propositional logic, and then see what modifications will suggest them
selves. In the case of propositional logic, we reach a completed tableau
after finitely many stages. Upon completion, every open branch is a
Hintikka set. And by Hintikka's lemma, every Hintikka set is truth
functionally satisfiable.

Our first task is to give an appropriate definition of "Hintikka set"
for first order logic in which we specify conditions not only on the o:'s
and f3's but also on the y's and b's as well. We shall define Hintikka sets
for arbitrary universes U of constants.

Definition. By a Hintikka set (for a universe U) we mean a set S
(of V-formulas) such that the following conditions hold for every o:, /3,
y, bin Eu:

H 0 : No atomic element of Eu and its negation (or conjugate, if we
are working with signed formulas) are both inS.

H 1 : If o:ES, then o:1 , o:2 are both inS.
H 2 : If {3ES, then /31 ES or /32 ES.
H 3 : If yES, then for every kE U, y(k)E S.
H 4 : If bES, then for at least one element kEU, b(k)ES.
Now we show

J

