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Exercise 2. Give an example of a sentence which is truth-functionally 
satisfiable but not first order satisfiable. 

Exercise 3. [Important!] Show that a quantifier-free sentence (i.e. 
a sentence with no quantifiers) which is truth-functionally satisfiable 
must also be first order satisfiable. 

Show therefore that if a quantifier-free sentence is valid, then it must 
be a tautology [this is a semantic version of Hilbert's first ~:-theorem]. 
More generally, show that any S (finite or infinite) of quantifier-free 
sentences which is (simultaneously) truth-functionally satisfiable is also 
(simultaneously) first order satisfiable [Hint: Take any Boolean valuation 
of E which satisfies S. This Boolean valuation induces a certain inter
pretation I of the predicates of S (in a manner we have discussed earlier). 
Show that every element X of Sis true under this interpretation I (use 
induction on the degree of X)]. 

Chapter V 

First-Order Analytic Tableaux 

§ 1. Extension of Our Unified Notation 

We use "ex", "fJ" exactly as we did for propositional logic (only now 
construing "formula" to mean "closed formula of quantification theory"). 
We now add two more categories y and() as follows. 

For the moment let us work with unsigned formulas. Then "y" shall 
denote any formula of one of the two forms (Vx)A, ~(3x)A, and for 
any parameter a, by y(a) we mean A~, ~A~ respectively. 

We use"()" to denote any formula of one of the two forms (3x)A, 
~(V x)A, and by b(a) we respectively mean A~, ~(A~). We refer to 
y-formulas as of universal type, and b-formulas as of existential type. 

In working with signed formulas, y shall be any signed formula of 
one of the forms T(V x)A, F(3x)A, and y(a) is respectively T A~, FA~. 

And() shall be any signed formula of one of the forms T( 3x)A, F(V x)A, 
and b(a) is respectively T A~, FA~. 

In considering sentences with constants in the universe U, we use y, 
() in the same manner and for any kE U, we define y(k), b(k) similarly. 

Under any interpretation in a universe U, the following facts clearly 
hold: 

F 1 : ex is true iff ex1 , ex2 are both true. 
F 2 : fJ is true iff at least one of fJ 1 , fJ 2 is true. 
F 3 : y is true iff y(k) is true for every kE U. 
F 4 : ()is true iff b(k) is true for at least one kE U. 
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As consequences of the above facts, we have the following laws 
concerning satisfiability, of which G1,G2 ,G3 are immediate and G

4 
(which the reader should look at most carefully) we will prove. In these 
laws, S is any set of formulas perhaps with parameters (but no other 
constants), and likewise with ex, fJ, y, b. And "satisfiable" means first 
order satisfiable. 

G1 : If Sis satisfiable, and exES, then {S,ex1 ,ex2 } is satisfiable. 
G2 : If Sis satisfiable and {JES, then at least one of the two sets 

{S,{Jt}, {S,fJ2 } is satisfiable. 
G3 : If S is satisfiable and yES, then, for every parameter a, the set 

{ S, y(a)} is satisfiable. 
G 4 : If S is satisfiable and () E S, and if a is any parameter which occurs 

in no element of S, then { S, b(a)} is satisfiable. 
We leave the verification orG1 ,G2 ,G3 to the reader; we shall now 

prove the very critical law G4 . 

By hypothesis, there is an interpretation I of all predicates of S in 
some universe U and a mapping cp of all parameters of S into elements 
of U such that for every AES, the U-sentence A"' is true under I. In 
particular, b"' is true under I . The sentence b"' is a sentence with no 
parameters but with constants in U and it is a sentence of existential 
type, call it b1 . Since b1 is true under I , then (by F 4 ), there must be at 
least one element k of U such that b1 (k) is true under I. Now cp is defined 
on all parameters of {S,b(a)}, except for the parameter a. We extend cp 
by defining cp(a) = k-call this extension cp*. Then cp* is defined on all 
parameters of {S,b(a)}. Clearly, for every AES,A"'* is the same expression 
as A"', so A"'* is true under I . And [b(a)]"'* is the same sentence as b1(k), 
hence [b(a)]"'* is true under I. Hence, for every AE{S,b(a)},A"'* is true 
under I. Thus { S, b(a)} is satisfiable. 

§ 2. Analytic Tableaux for Quantification Theory 

Whether we work with signed formulas or not, our tableaux rules 
for first order logic are the following four: 

Rule A: RuleB: _fJ_ 
· fJ1 l fJ2 

Rule C: y(a), where a is any parameter. 

(j 
Rule D : b(a), where a is a new parameter. 
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Rules A, B are the same as in propositional logic. The new rules C, D 
(for eliminating quantifiers), are direct rules; the only one of the four 
rules which is a branching rule is Rule B. In signed notation, Rules C, D 
are as follows: 

T('v'x)A F(3x)A 
RuleC: 

TA~ FA~ 

T(3x)A . . 
Rule D: , with proviso (that a IS new) 

TA~ 

F('v' x)A . 
--- , with same proviso 
FA~ 

Using unsigned formulas, our quantificational rules are: 

('v'x)A ~(3x)A 
Rule C: 

A~ ~A~ 

(3x)A . . 
Rule D: --, With proviso 

A~ 

~('v'x)A . . 
---, With prOVISO 
~A~ 

Discussion concerning Rule D. This rule is a formalization of the 
following informal argument used constantly in mathematics. Suppose 
in the course of an argument we have proved that there exists an element x 
having a certain property P-i. e. we have proved the statement ( 3 x) P x. 
We then say, "let a be such an x" and we write P a. Of course, we are not 
asserting that P holds for every a, but just for at least one. If we subsequently 
show that for another property Q, there exists an x such that Q x, we 
cannot legitimately say "let a be such an x", because we have already 
committed the symbol "a" to being the name of some x such that Px 
and we do not know that there is any single x having both the properties P 
and Q. Thus we take a new parameter b, and say "let b be such an x", 
and we write Q b. This is the reason for the proviso in Rule D. 

Actually we can liberalize Rule D by replacing the clause "providing 
a is new", by "providing a is new, or else a has not been previously 
introduced by Rule D, and does not occur in <5, and no parameter of <5 
has been previously introduced by Rule D". Under this liberalization, 
proofs can sometimes be shortened (cf. Example 2 below.) 
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The idea behind this liberalization is this. Suppose in the course 
of an argument we prove a sentence ('v' x) Px (which is of type y). Then 
we conclude Pa. We have not really committed "a" to being the name 
of any particular individual; P a holds for every value of a. So if we 
subsequently prove a sentence (3 x) Q x, we can legitimately say, "let a 
be such an x", and for the same value of a, P a will also hold. 

The above discussion is but an informal foreshadowing of a precise 
argument showing the consistency of the tableau method for first order 
logic. Actually, if we stick to the strict version of Rule D, the consistency 
is almost immediate from the conditions G1, G2 , G3 , G4 of satisfiability 
which we stated in § 1. 

For suppose 8 is a branch of a tableau and that 8 is satisfiable. If we 
extend 8 by rule A, C or D then the resulting extension is again satisfi
able (by G1, G3 , G4 , respectively). If we simultaneously extend 8 to 
2 branches 81, 82 by one application of rule B, then at least one of 81, 82 
is again satisfiable (by G2). Thus any immediate extension of a tableau 
which is satisfiable (in the sense that at least one of its branches is satisfi
able) is again satisfiable. Therefore (by induction) if the origin of a 
tableau is satisfiable, then at least one branch of the tableau is satisfi
able and hence open. Therefore if a tableau closes, then the origin is 
indeed unsatisfiable-stated otherwise, every provable sentence is valid. 

The precise justification of the liberalized version of Rule D is a bit 
more delicate; we shall return to this later. Meanwhile we wish to get 
on with some concrete working familarity with First Order Tableaux. 

Example 1. The following tableau is a proof of the sentence 

('v'x) [Px :::::> Q x ] :::::> [('v'x)Px :::::> ('v'x)Qx] 

(1) ~[('v'x)[Px :::::> Qx] :::::> [('v'x)Px :::::> ('v'x)Qx]J 

(2) ('v'x)(Px :::::> Qx) (1) 
(3) ~ [('v' x)Px :::::> ('v' x) Qx] (1) 
(4) ('v'x)Px (3) 
(5) ~('v' x)Qx (3) 
(6) ~Qa (5) 
(7) Pa (4) 
(8) Pa:::::>Qa (2) 
(9) ~Pa (8) 

I 
(10) Qa (8) 

X X 

Example 2. We wish to give 2 different proofs of the sentence 
( 3y) [( 3x) P x :::::> P y]. The first proof uses the strict form of RuleD, and 
the second (which is shorter) uses the liberalized version of Rule D: 
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Proof 1. (1) F(3y)[(3x)Px=>Py] 

(2) F(3x)Px :::> Pa (1) 

(3) T(3x) Px (2) 
(4) FPa (2) 
(5) TPb (3) 
(6) F(3x)Px=>Pb (1) 

(7) FPb 
X 

Proof2. (1) F(3y) [(3x)Px => Py] 

(2) F(3x)Px :::> Pa (1) 

(3) T(3x)Px (2) 
(4) FPa (2) 
(5) TPa (3) 

X 

Exercises. Prove the following formulas: 

('if y) ['if x) P x :::> P y] 

('ifx)Px=>(3x)Px 

(3y)[Py=>('ifx)Px] 

~(3y)Py => [('ify) ((3x)Px => Py}] 

(3x)Px :::> (3y)Py 

('ifx) [PxAQx] = ('ifx)PxA('ifx)Qx] 

[('ifx)Pxv ('ifx)Qx] :::> ('ifx) [PxvQx] 
(the converse is not valid!) 

(3x)(Pxv Qx)=((3x)Pxv (3x)Qx) 

( 3x)(P x A Q x) :::> ((3x)Px A (3x)Q x) 
(the converse is not valid). 

In the next group, C is any closed formula-or at least the variable x 
does not occur free in it: 

('if x)[P x v CJ =[('if x)Px v C] 
(3x)[PxA CJ = [(3x)Px A CJ 

(3x)C = C 

('if x) C = C 

(3x) [C :::> Px] = [C =>(3x)Px] 

(3x)[Px => CJ = [('ifx)Px :::> CJ 
('ifx)[C :::> Px] = [C => ('ifx)Px] 

('ifx) [Px :::> CJ = [(3x)Px :::> CJ 

§ 3. The Completeness Theorem 

Show (H A K) :::> L , where 
H =('if x) ('if y) [Rxy :::> Ryx] (R is symmetric) 
K=('ifx)('if y)('ifz) [(Rxy A R yz) :::> Rxz] ( R is transitive) 
L =('if x) ('if y) [ R x y :::> R x x] (R is reflex ive on its domain of 

definition). 
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For a hard one, try the following exercise (taken from Quine [1]): 
Show (A A B)=> C, where 

A =('ifx) [(Fx A Gx) :::> Hx] :::> (3x) [Fx A ~Gx] 
B =('if x) [ F x :::> G x] v ('if x) [ F x :::> H x] 
C=('ifx)[i Fx A Hx)=>Gx]=> (3 x)[Fx A Gx A ~Hx] 

§ 3. The Completeness Theorem 

Now we turn to the proof of one of the major results in quantifica
tion theory: Every valid sentence is provable by the tableau method. 

This is a form of Godel's famous completeness theorem. Actually 
GOdel proved the completeness of a different formalization of Quanti
fication Theory, but we shall later show how the completeness of the 
tableau method implies the completeness of the more conventional for
malizations. The completeness proof we now give is along the lines of 
Beth [1] or Hintikka [1]-and also Anderson and Belnap [1]. 

Let us first briefly review our completeness proof for tableaux in 
propositional logic, and then see what modifications will suggest them
selves. In the case of propositional logic, we reach a completed tableau 
after finitely many stages. Upon completion, every open branch is a 
Hintikka set. And by Hintikka's lemma, every Hintikka set is truth
functionally satisfiable. 

Our first task is to give an appropriate definition of "Hintikka set" 
for first order logic in which we specify conditions not only on the o:'s 
and f3's but also on the y's and b's as well. We shall define Hintikka sets 
for arbitrary universes U of constants. 

Definition. By a Hintikka set (for a universe U) we mean a set S 
(of V-formulas) such that the following conditions hold for every o:, /3, 
y, bin Eu: 

H 0 : No atomic element of Eu and its negation (or conjugate, if we 
are working with signed formulas) are both inS. 

H 1 : If o:ES, then o:1 , o:2 are both inS. 
H 2 : If {3ES, then /31 ES or /32 ES. 
H 3 : If yES, then for every kE U, y(k)E S. 
H 4 : If bES, then for at least one element kEU, b(k)ES. 
Now we show 

J 


