
MATHEMATICAL THEORY OF COMPUTATION

VB~ifie!8tillg
llf ~~llg~8ms

Introduction

CHAPTER 3

The purpose of this chapter is to describe methods for verifying computer
programs. Suppose we are given a computer program with a description
of its behavior, that is, a characteristic predicate (later called an output
predicate), which describes the relationships among the program variables
that must be satisfied at the completion of the program execution. Sometimes
we are also given an input predicate, which defines the input restrictions
that must be satisfied to make execution of the program meaningful. Our
task is to prove that the program is correct with respect to such input and
output predicates; that is, for all program executions with inputs satisfying
the input predicate, we must guarantee that the program is terminated and
that at the completion of execution the output predicate is satisfied. In
this chapter we shall describe the construction of such proofs of correctness.

In order to discuss programs and their correctness we must specify
a programming language. We shall consider flowchart programs without
arrays (Sec. 3-1) and with arrays (Sec. 3-2), as well as simple Algol-like
programs (Sec. 3-3). Methods for proving correctness of recursive programs
are discussed in detail in Chap. 5.

3-1 FLOWCHART PROGRAMS

First let us consider a very simple class of flowchart programs. We distin
guish among three types of variables (grouped as three vectors): (1) an input

vector .X = (x1 , x2 , ... , X 8), which consists of the given input values and
therefore never changes during computation; (2) a program vector ji =

161

162 VERIFICATION OF PROGRAMS

(y1 , y2 , . .• , Yb), which is used as temporary storage during computation;
and (3) an output vector z = (z 1 , z 2 , . . . , zc), which yields the output values
when computation terminates. Correspondingly, we also distinguish among
three types of (nonempty) domains: (1) an input domain Dx, (2) a program
domain D-y, and (3) an output domain D,. Each domain is actually a cartesian
product of subdomains:

Dx = Dx1 X DX2 X X Dx,

Dy = DYI X DY2 X X Dh

D, = DZI X DZ2 X X Dz,

We also distinguish among four types ofstatements:t

1. START statement

wheref(x) is a total function mapping D-x into D-y.
2. ASSIGNMENT statement

where g(x, ji) is a total function mapping D-x x D-y into D-y
3. TEST statement

where t(x, ji) is a total predicate over D:x x DJi

t In addition, we clearly allow the JOINT statement tor combining two or more arcs (arrows) into
a single one.

FLOWCHART PROGRAMS 163

4. HALT statement

where h(x, ji) is a total function mapping D;; x Dy into D,

A flowchart program is simply any flow-diagram constructed from these
statements (with exactly one START statement) such that every ASSIGN
MENT or TEST statement is on a path from the START statement to
some HALT statement. In other words, flowchart programs are not al
lowed to include "dead-end" TEST statements such as

T t ex, .Yl F

Given such a flowchart program P and an input value ~ E D-x for the
input vector x, the program can be executed. Execution always begins at
the START statement by initializing the value of ji tof(~) and then proceeds
in the normal way, following the arcs from statement to statement. When
ever an ASSIGNMENT statement is reached, the value of y is replaced
by the value of g(x, y) for the current values x and jl. Whenever a TEST
statement is reached, execution follows the T or F branch, depending
on whether the current value of t(x, y) is true or false; the value of y is
unchanged by a TEST statement. If the execution terminates (i.e., reaches a
HALT statement), z is assigned the current value, say, ~' of h(x, ji) and we
say that P(e) is defined and P(~) = (; otherwise, i.e., if the execution never
terminates, we say that P(~) is undefined. In other words, the program P
should be considered as representing a partial function z = P(x) mapping
Dx into D,.

For example, the flowchart program in Fig. 3-1 performs the integer
division of x 1 by x2 , where x 1 ~ 0 and x2 > 0, yielding a quotient z1 and
a remainder z2 ; that is, z1 = div(x 1 ,x2), and z2 = rem(x 1 ,x2) . Here x =

(x1 , x2), ji = (y1 , y2), z = (z1 , z2), and Dx = D-y = D, = {all pairs of inte
gers}.

164 VERIFICATION OF PROGRAMS

T F

Figure 3-1 Flowchart program for performing inteqer division.

Note that (y1 , Y2) ~ (0, x 1) means that y 1 is replaced by 0 and y2 is replaced
by x1 ; similarly (y1 , y2) ~ (y1 + 1, y2 - x2) means that y1 is replaced by
y 1 + 1 and y2 is replaced by y2 - x2 • In general, we shall use the notation
(y1 , Yz, ... , Yn) ~ (gdx, y), g2 (.X, y), .. . , 9n (.X, y)) to indicate that the
variables yi, 1 ~ i ~ n, are replaced by gi(x, y) simultaneously; that is, all

the g/s are evaluated before any Yi is changed. For example, if y1 = 1 and
Yz = 2, the assignment (y1 , y 2) ~ (Yl + 1, y1 + y2) yields y 2 = 3, not y 2 =
4. The assignment (y1 , y2) ~ (y2 , y1) has the effect of exchanging the con
tents of y 1 and Y2 .

The verification of a flowchart program depends on two given pred
icates:

1. A total predicate rp(x) over D-,;, called an input predicate, which
describes those elements of D-x that may be used as inputs. In other words,
we are interested in the program's performance only for those elements of
Dx satisfying the predicate rp (x). In the special case where we are interested
in the program's performance for all elements of Dx, we shall let rp(x)
be T; that is, rp (.X) is true for all elements of Dx.

2. A total predicate 1/J(x, z) over Dx x Dz, called an output predicate,
which describes the relationships that must be satisfied between the input
variables and the output variables at the completion of program execution.

We may then define the following:

1. P terminates over rp if for every input ~, such that rp (~) is true, the
computation of the program terminates.

FLOWCHART PROGRAMS 165

2. P is partially correct with respect to (wrt) rp and 1/1 if for every ~
such that rp(~) is true and the computation of the program terminates,
1/J(~, P(~)) is true.

3. P is totally correct with respect to (wrt) rp and 1/1 if for every ~ such
that rp(~) is true, the computation of the program terminates and l/1(~, P(~))
is true.

Thus, in partial correctness we "don't care" about termination, but
in total correctness termination is essential. Verifying a program for a
given input predicate rp (.X) and an output predicate 1/J (.X, z) means showing
that it is totally correct wrt rp and 1/J. However, usually it is most convenient
to prove the program in two separate steps: first prove partial correctness
wrt rp and 1/J, and then prove termination over rp.

We shall now introduce methods for proving both partial correctness
and termination of flowchart programs. Let us demonstrate the correctness
of the division program introduced previously. First we show that the pro
gram is partially correct wrt the input predicate

rp(x1 ,x2): X1;;:;: 0 A x2 ;;:;: 0

(which asserts that we are interested in the program's performance when
both x1 and x2 are nonnegative) and the output predicate

i/J(x1 ,x2 ,z1 ,z2): x 1 = z1x2 + z2 A 0 ~ z2 < x2

(which is essentially a definition of integer division). Then we show that the
program terminates over

rp'(x1 ,x2): x 1 ;;:;: 0 A x 2 > 0

Thus, since the program is partially correct wrt rp and ljJ and terminates
over rp', it follows that the program is totally correct wrt rp' and 1/J. Note
the difference between rp and rp' ; it is essential to exclude the case x2 = 0
when termination is discussed because the program does not terminate for
x 2 = 0.

Partial correctness To prove the partial correctness of the division
program wrt rp and 1/J (see Fig. 3-2), we attach the input predicate rp to
point A and the output predicate 1/1 to point C. The main problem in verifying
programs is how to handle loops. The loop of this program becomes
manageable by "cutting" the program at point B, which decomposes the
program flow into three paths: the first path is from A to B (arcs 1 and 2);
the second is from B around the loop and back to B (arcs 3, 4, and 5); and
the third is from B to C (arcs 3, 6, and 7). We identify these three paths as

166 VERIFICATION OF PROGRAMS

a (START), p (LOOP\ andy (HALT), respectively. All terminating execu
tions of the program must first follow path a, then pass some number of
times (possibly zero) around the loop p, and finally finish with path y;
thus all executions are "covered" by these three paths.

2
.-- -------_.8- ---- --Cut

3

T Yz ~ Xz F

5 4 6

7
C -------t/l(xl,Xz,ZI , zz) :

HALT
X 1 = Z 1X 2 + z2

A 0 ;£ Zz < Xz

Figure 3-2 Flowchart program for performing integer div ision (with the input and
output predicates) .

In order to prove the partial correctness of the program, first we must
find a predicate p (x1 , x 2 , y 1 , y2) describing the relationships among the
program variables at cutpoint B. An appropriate predicate for this purpose
is obtained by taking p(x 1 , x2 , y1 , y2) to be

X1 = Y1X2 + Yz A Yz ~ 0

Having obtained this predicate, we have covered the program by three
paths, each of which begins and ends with a predicate. The partial cor
rectness of the program is proved by verifying each one of the three paths
a, p, and y by showing that if its initial predicate is true for some values of
x and y, and the path is executed then its final predicate will be true for the
new values of x andy.

In the integer division program, verification of path a establishes that
p(x1, x2, Y1, y2) is true on the first entrance to the loop of the program
(assuming the input predicate of the program is satisfied). Verification of

FLOWCHART PROGRAMS 167

path p shows that if p(x1, x2, y1, y 2) is true at the entrance of the loop the
first time, it will be true the second time; if it is true the second time, it will
be true the third time; etc. Verification of path y shows that when the loop
is left with predicate p (x1 , x2 , y 1 , y 2) true, then the output predicate of the
program is true. In other words, verification of paths a and p guarantees
that p(x1, x2, y 1 , y2) has the property that whenever the computation of
the program reaches the cutpoint 8, p(x1 , x 2 , y 1 , y2) is true for the current
values of x 1 , x 2 , YI> and y2 • Therefore, verification of path y implies that
whenever the computation of the program reaches point C, the output
predicate of the program is true.

In order to complete the proof of the partial correctness of the division
program, we must verify the paths a, p, and y. The verification of a path
is performed in two steps: First we construct a verification condition for
each path in terms of the given predicates, and then we prove it.

Constructing a verification condition of a path is usually done by
moving backward through the path, considering each statement in turn.
Path a: Let's consider firs t path a of Fig. 3-2.

A -------- cp(x 1 ,Xz)

1

2

8
-------p(xt ,Xz,Yt ·Yz)

What must be true at point A, that is, before the execution of the statement
(y1 , y2) <-- (0, xr), to ensure that p(x1 , x 2 , y1 , y2) is true after its execution?
The answer is p(x1 , x2 , 0, x 1), which is formed by substituting 0 for all
occurrences of y1 in the predicate and x 1 for all occurrences of y2 . Thus,
the verification condition of this path is

that is,

[x1 ~ 0 1\ x 2 ~ OJ ~ [x1 = 0 · x 2 + X 1 1\ X 1 ~ OJ

Path p: To construct the verification condition of path p, the TEST state
ment must be handled. As we follow path p, the TEST statement finds
y2 ~ x2 , which can be shown as an annotated piece of flowchart:

168 VERIFICATION OF PROGRAMS

T

4

5
-- - - - - - - - - -- P (x 1, Xz , Y 1 , Yz)

B

Deriving the predicate p(x1 , x2 , y 1 , y2) backward past the ASSIGNMENT
statement yields p(x1, x2, y1 + 1, y 2 - x2) at arc 4. Although the TEST
statement does not change the value of any program variable, it does
supply additional useful information because, after the test, it is clear that
Yz ~ x 2 . To handle this case, the same question used on ASSIGNMENT
statements is asked: What must be true at arc 3 so that when control takes
the T branch of the TEST statement, that is, when Yz ~ x 2 is true, the
predicate p(x1 , x2 , y1 + 1, y 2 - x 2) will be true at arc 4? In this case, the
answer is simply Yz ~ x 2 => p(x 1 , x2 , y 1 + 1, Yz - x2). Thus, the complete
analysis of path {3 is

B
-----p(xl, Xz , Y1, Yz)

3
- ---- Yz ~ Xz :::> p(x t ,Xz,Yz + 1,Yz- Xz)

T

---------p(x i, Xz,YI + l, yz - Xz)
4

5

B ---------p(xt, Xz, Y1, Yz)

In this case the verification condition to be proved is

p(xt , Xz,Yt>Yz) :::> [Yz ~ Xz :::> p(xi , Xz ,Yt + l ,Yz - Xz)]

FLOWCHART PROGRAMS 169

or, equivalently,

p(xi , Xz, yi , Yz) 1\ Yz ~ Xz => p(xi , Xz ,YI + 1, yz- Xz)t

Path y: The analysis of path y results in

B
- - ------P(Xl, Xz • Y1, Yz)

3

Yz ~ Xz
F

c
---- -- t/J (x 1 ,x2 ,z1 ,z2)

The verification condition to be proved is

p(xt,Xz,YI ,Yz) :::> [Yz < Xz :::> t/J (x i ,Xz,yi,Yz)]

or equivalently,

p(xi ,Xz,Yt ,Yz) 1\ Y2 < Xz => t/J (x t ,Xz,Yt,Yzl

Thus, we have fo rmed the three verification conditions:
q>(x t , x2) => p(x 1,x2 , 0,xd

p(xt ,Xz ,Yt ,Yz) 1\ Yz ~ Xz :::> p(x t , Xz ,Yt + 1,yz - Xz)
p(xt,Xz,yi ,Yz) 1\ Y2 < Xz :::> t/J(x t ,Xz,Yt ,Yz)

where

cp(x 1 ,x2)

p(xt ,Xz ,yt ,Yz)
is x 1 ~ 0 1\ x 2 ~ 0

IS X 1 = Yt Xz + Yz 1\ Y2 ~ 0

(a)

({3)
(y)

The reader can check for himself that for all integers x 1 , x 2 , y1 , and Yz ,
the three verification conditions are true; thus, the program is partially
correct wrt q> and t/J.

t Throughout this chapter it should be understood that an expression of the form A 1 A A 2 :::> B
standsfor (A 1 A A1) => Band.ingenerai,A 1 A A1 A . .. A A. => Bstandsfor (A, A A 2 A .. A A.)

:::> B.

170 VERIFICATION OF PROGRAMS

Termination Actually, so far we have only partially verified our program:
We have proved that whenever a computation of the program terminates
(that is, reaches a HALT statement), the output predicate is true; however,
we have not proved at all that the computation of the program indeed
terminates. Thus, in order to complete the verification of the division
program, we must prove termination as well.

We shall now prove that the program terminates for every input x 1

and x 2 where

(Note, again, that the program does not terminate for x2 = 0.) First we
show that the predicate

q(xl,Xz,yl ,Yz): Yz ~ 0 1\ Xz > 0

has the property that whenever we reach point B during the computation,
q (x1 , x 2 , Y!, y2) is true for the current values of the variables. For this
purpose, we must prove the following two verification conditions :

ql(x1 , x2) ::J q(x1 , x 2 ,0,xd (o:)

q(xl, Xz ,YI,Yz) 1\ Yz ~ Xz ::J q(xl,Xz ,Y! + l ,y2 - x 2) (/])

that is,

(x1 ~ 0 1\ x 2 > 0) ::J (x1 ~ 0 1\ x 2 > 0)

(yz ~ 0 1\ Xz > 0 1\ Yz ~ Xz) ::J (Yz - x 2 ~ 0 1\ x 2 > 0)

which are clearly true.

We observe now that since we always have x 2 > 0 at point B, whenever
we go around the loop (from B back to B), the value of Yz decreases. Also,
we know that y 2 ~ 0 whenever we reach point B. Thus, since there is no
infinite decreasing sequence of natural numbers, we cannot go infinitely
many times around the loop; in other words, the computation must termi
nate. Using this approach, we present a general technique for proving
termination of programs in Sec. 3-1.2.

3-1.1 Partial Correctness

Let us generalize the technique demonstrated in verifying the division
program. Suppose we are given a flowchart program P, an input predicate
<p, and an output predicate ljJ; to prove that P is partially correct wrt <p

and 1/1 we proceed as follows.

FLOWCHART PROGRAMS 171

Step 1. Cutpoints. The first step is to cut the loops of the program by
choosing on the arcs of the flowchart a finite set of points, called cutpoints,

in such a way that every loop includes at least one such cutpoint. To this
set of cutpoints we add a point on the arc leading from the START box,
called the START point, and, for each HALT statement, a point on the
arc leading to the HALT box, called a HALT point.

-----HALT point

HALT

We consider only paths which start and end at cutpoints and which
have no intermediate cutpoints. Each such path is finite because of the re
striction that every loop includes a cutpoint, and there can be only a finite
number of paths. Let a be a path leading from cutpoint ito j.t In the follow
ing discussion, we shall make use of the predicate RJx, .YL which indicates
the condition for thi path to be traversed, and rJx, -), which describe
the ffirn.sformation of the values of y effectea while the path is traversed.
Thus, Ra(x, y) is a predicate over D-x x Dv, and ra(x, y) is a function mapping
D-x x Dy into Dy. Both Ra and ra are expressed in terms of the functions
and tests used in o:; a simple method for deriving them is to use the back

ward-substitution technique.
Initially, R (x, ji) is set to T and r (x, ji) is set to y, and both are attached

to cutpoint j; then, in each step, the old R and r are used to construct the
new Rand r, moving backward toward cutpoint i. The final Rand r obtained
at cutpoint i are the desired Ra and ra. The rules for constructing the new

R and r in each step are :

tNote that i = j is possible. as in the division example.

172 VERIFICATION OF PROGRAMS

-----New { R(x, f(x))
r(x, f(x))

-----Old { R(x, y)
r(x,y)

- - ---New { R(x,g(x,y))
r(x, g(x, y))

{
R(x, y)

-- ---Old
r(x, y)

- - --Old {R~x,_Y)
r(x, y)

-- - - --New{ ~ ~(~,.Y) A R(x,y)
r(x, y)

- --------- - - -Old { ~(~:~)

~-;/----New { R~x,!)
• r(x, y)

1 { R(x,ji)
- --- -- Old

r(x, y)

Consider, for example, the backward-substitution technique for path
a described in Fig. 3-3. Starting with T for R and y for r at cutpoint j, we
proceed backward and at cutpoint i finally obtain

R~(x,y): tl(x,gdx,y)) A~ t2 (x,g2 (x,gdx,y)))

ra(x, y): g3 (.X, gz (x, gl (x, y)))

FLOWCHART PROGRAMS 173

In the special case that j is a HALT point, r is initialized to z and R
to T; then in the first step of moving backward we obtain

_____ { R (x, y) T
r(x,y) h(x,y)

The process then continues by moving backward, as described previously.
In the special case that i is the START point, both Ra(x, y) and ra(x, y) contain
no fs; Ra is a predicate over Dx, and ra is a function mapping Dx into Dv.

i --~~ep_6 __ { R: t t(x,gdx,y)) A~ t2 (x,g2 (x,g 1 (x,y)))
r: g3(x,g2 (x,gdx,y)))

tdx,y) A~ t2 (x,g2 (x,y))
g3(x,gz(x,Y))

-~~p_4 __ { R : ~ t2 (x, g2 (x ,y))
r: g3(x,g2 (x , y))

y+--gz(X, y)

_ ~~ep _3 __ { R:
r :

-----L-..._

t 2 (x,y)

j --~~p_l __ { R: T
r: y

~ t 2 (x, .Y)t
g3(x, .Y)

Figure 3-3 Backward -substitution technique.

t Note that we have used the fact that - 12 !-'i . .f) 1\ T is logically equivalent to - 12 (.x. y).

174 VERIFICATION OF PROGRAMS

Step 2. Inductive assertions. The second step is to associate with each
cutpoint i ofthe program a predicate p;(x, y) (often called inductive assertion),
which purports to characterize the relation among the variables at this
point; that is, p;(x, .Y) will have the property that whenever control reaches
point i, then p;(x, ji) must be true for the current values of x and ji at this
point. The input predicate cp (x) is attached to the START point, and the
output predicate t/J (x, z) is attached to the HALT points.

Step 3. Verification conditions. The third step is to construct for every
path rx leading from cutpoint ito j the verification condition:

This condition states simply that if P; is true for some values of x and ji,
and x and ji are such that starting with them at point i the path rx will
indeed be selected, then Pi is true for the new values of x and ji after the
path rx is traversed.

In the special case that j is a HALT point, the verification condition
IS

and in the case that i is the START point, the verification condition is

The final step is to prove that all these verification conditions for our
choice of inductive assertions are true. Proving the verification conditions
implies that each predicate attached to a cutpoint has the property that
whenever control reaches the point, the predicate is true for the current
values of the variables; in particular, whenever control reaches a HALT
point, t/J(x, z) is true for the current values of x and z. In other words,
proving the verification conditions implies that the given program P is
partially correct wrt cp and t/J.

To summarize, we have the following theorem.

THEOREM 3-1 [INDUCTIVE-ASSERTATIONS METHOD (Floyd)]
For a given flowchart program P, an input predicate cp(x), and an output
predicate t/J(x, z), apply the following steps: (1) Cut the loops; (2) find
an appropriate set of inductive assertions ; and (3) construct the verifica
tion conditions. If all the verification conditions are true, then P is partially
correct wrt qJ and t/J.

FLOWCHART PROGRAMS 175

In general, all the steps are quite mechanical, except for step 2; dis
covering the proper inductive assertion requires a deep understanding of
the program's performance. Let us illustrate the inductive-assertions

method with a few examples.

EXAMPLE 3-1
The program P 1 over the integers (Fig. 3-4) computes z = L .JX J for
every natural number x ; that is, the final value of z is the largest integer k
such that k ~ JX. The computation method is based on the fact that
1 + 3 + 5 + · · · + (2n + 1) = (n + W for every n ;;;; 0 ; n is computed
in y

1
, the odd number 2n + 1 in y3 , and the sum 1 + 3 + 5 + · · · +

(2n + 1) in Y2 .

Yz <-- Yz + Y3

B

F

Figure 3-4 Program P 1 for computing : = L x J

We shall prove that the program is partially correct wrt the input
predicate cp (x): x ;;;; 0 and the output predicate t/1 (x, z): z

2 ~ x <
(z + 1)2• For this purpose first we cut the only loop of the program at

176 VERIFICATION OF PROGRAMS

point B and therefore have three control paths to consider. Using the
backward-substitution technique, we obtain the predicate R and term r
for each path as follows.

Path r:t.. (from A to B):

A Step 3 { R : T
I . (0, 0 + I, I)

Step 2 {R: T

I · (y I • J' 2 + Y 3 ' J' 3)

Step I { R : T
B r : (y, , yz.J'.d

Thus, Ra is T, and ra is (0, 1, 1).

Path f3 (from B to B):

F -- --~~p_3 __ { R : T
r: (Yt + · l , y2 + Y3 + 2,y3 + 2)

(yl 'Y3) +-- (yl + 1, Y3 + 2)

--- -~t~~~-- { R: T
.----L----, r: (Yl , Y 2 + Y3 , Y3)

Thus, Rp is y2 ~ x, and r p is (y1 + 1, y2 + Y3 + 2, Y3 + 2).

Path y (from B to C):

B ----~~p} __ { R: y 2 > x
r : Yt

Y2 > x

Thus, R y is y 2 > x, and ry is y 1 •

FLOWCHART PROGRAMS 177

Now we are ready to verify the given program. For this purpose we
attach the inductive assertion

p(x, yt,Y2 , Y3): yf ~ x 1\ Y2 = (Yt + W 1\ Y3 = 2yt + 1

to cutpoint B, in addition to attaching the input predicate <p(x): x ~ 0
to cutpoint A and the output predicate 1/J(x, z) : z2 ~ x < (z + 1)2 to
cutpoint C (see Fig. 3-5).

The three verification conditions to be proved (for all integers x, y1 ,

Yz, and YJ) are:

1. For path r:t..

[<p(x) 1\ T] ::::J p(x, O, 1, 1)

that is,

X ~ 0 ::::l [02 ~ X 1\ 1 = (0 + 1)2
1\ 1 = 2 · 0 + 1]

2. For path f3

[p (x,y1 , y2 , Y3) 1\ Yz ~ x] ::::J p(x,yt + 1, y2 + Y3 + 2,y3 + 2)

that is,

[yf ~ x 1\ Yz = (Yt + W 1\ Y3 = 2yt + 1 1\ Y2 ~ x]

::::J [(Yt + 1? ~ X 1\ Y2 + Y3 + 2 = (Yt + 2)2

A Y3 + 2 = 2(y 1 + 1) + 1]

178 VERIFICATION OF PROGRAMS

x~O

B ---- p(x,y~>y2,Y3): YI ;£ x A Y2 = (y 1 + 1)2

A Y3 = 2yt + I

C - -----l{l(x,z): z2 ;£ x < (z + 1)2

Figure 3-5 Program P1 for computing = = LJXJ (partial correctness).

3. For path y

[p(x,yt,Y2•Y3) A Y2 > x]:::) l{l(x,yd

that is,

[yf ;£X A Y2 = (y1 + 1)2
A Y3 = 2y 1 + 1 A Y2 > x]

:::) yf ;£ X < (y1 + 1)2

Since the three verification conditions are true, it follows that the given
program P 1 is partially correct wrt the input predicate x ~ 0 and the
output predicate z2 ;£ x < (z + 1)2

•

D

EXAMPLE 3-2

The program P 2 over the integers (Fig. 3-6) computes z = x 1 x
2 for any

integer x1 and any natural number x2 (we define 0° as equal to 1). The

FLOWCHART PROGRAMS 179

computation is based on the binary expansion of x2 , i.e., that for every

)'z ~ 0

y /2 = y 1 0 y /2 - 1

Y/2 = (Yt . YdY212
if Y2 is odd
if Y2 is even

START

A --------cp(x): x2 ~0

,.-------------..8------- p(x,y): x2 ~ 0 1\ Y2 ~ 0
A Y3 . . hn = x1x2

T

Figure 3-6 Program P2 for computing= = x 1"' (partial correctness) .

We shall prove that the program is partially correct wrt the input
predicate cp(.X): x 2 ~ 0 and the output predicate l{l(x, z): z = x1 ,.

2
• For

this purpose we cut both loops of the program at point B and attach to it
the inductive assertion

p(x,y): x 2 ~ 0 A Yz ~ 0 1\ y3 • y/2 = x 1x
2

The verification conditions to be proved (for all integers x1 , x2 , y1 , y2 ,

and Y3) are:

1. For path rx (from A to B)

cp(x):::) p(x,x 1 ,x2 , I)

180 VERIFICATION OF PROGRAMS

that is,

2. For path /3 1 (from B to B via statement 1)

[p(x,ji) A Yz =f. 0 1\ odd(yz)J :::l p(x,y1,Yz- 1,y1Y3)

that is,

[xz ~ 0 1\ Yz ~ 0 1\ Y3 · Y/2 = X1x2
1\ Yz =f. 0 1\ odd(Yz)J

:::J [xz ~ 0 1\ Yz - 1 ~ 0 1\ (Y1Y3) · Y1y2
-

1 = x1x2J

3. For path /3 2 (from B to B via statement 2)

[p(x, ji) 1\ y2 =f. 0 1\ even(y2)J :::J p(x, y 1 y 1 ,y2/ 2,y3)

that is,

[xz ~ 0 1\ Yz ~ 0 1\ Y3 · Yly2 = X1x2
1\ Yz =f. 0 1\ even(Yz)J

:::J [xz ~ 0 1\ Yz/ 2 ~ 0 1\ Y3. (y,ydY2!2 = x1x2J

4. For path y (from B to C)

[p(x,ji) 1\ Yz = OJ :::ll/J(x,Y3)

that is,

Since the four verification conditions are true, it follows that the program
is partially correct wrt the input predicate x 2 ~ 0 and the output predicate
z = xlxz.

D

EXAMPLE 3-3

The program P3 over the integers (Fig. 3-7) computes z = gcd (x 1 , x2) for
every pair of positive integers x 1 and x 2 ; that is, z is the greatest common
divisor of x 1 and x 2 [for example, gcd(14, 21) = 7, and gcd(13, 21) = 1]. The
computation method is based on the fact that

If Y1 > Yz, then gcd(y1, y2) = gcd(Yl - Yz, Yz)
If Y1 < Yz, then gcd(y1,y2) = gcd(y1.Y2- Yd
If Y1 = y2, then gcd(y1, y2) = Y1 = Yz

FLOWCHART PROGRAMS 181

We shall prove that the program is partially correct wrt the input
predicate q> (.X): x 1 > 0 1\ x2 > 0 and the output predicate t/1 (.X, z): z =

gcd(x1, x
2

). For this purpose we cut the two loops of the program at point
B and attach to the cutpoint B the assertion

p(.X, ji): x1 > 0 1\ x 2 > 0 1\ Y1 > 0 1\ Yz > 0 1\ gcd(y1, Yz) = gcd(x1, Xz)

x 1 > 0 1\ x 2 > 0

~------•---------p(x,ji): x 1 > 0 A x 2 > 0
B 1\ y, > 0 1\ Yz > 0

F

1\ gcd(y 1, y2) = gcd(x 1 , x 2)

I
I
I
I
L--l/I(.X, z): z = gcd(x 1, x2)

Figure 3-7 Program P 3 for computing z = gcd(x 1 • x 2) (partial correctness).

The verification conditions to be proved (for all integers x 1 , x 2 , y1 ,

and y2) are:

1. For path r:1. (from A to B)
cp(.X) :::J p(.X, x 1 , Xz)

that is,

[x 1 > 0 1\ x2 >OJ :::J [x1 > 0 1\ x 2 > 0
1\ x1 > 0 1\ x2 > 0 1\ gcd(x1,x2) = gcd(x1 ,x2)J

182 VERIFICATION OF PROGRAMS

2. For path /31 (from B to B via statement 1)

[p(x,ji) A Y! =I= Yz 1\ Y1 > Yz] ~ p(x,Y!- Yz,Yz)

that is,

[xl > 0 1\ Xz > 0 1\ Yl > 0 1\ Yz > 0
1\ gcd(yl , Yz) = gcd(xl, Xz) 1\ Y1 =I= Yz 1\ y 1 > Yz]
~ [xl > 0 1\ Xz > 0 1\ Y1 - Yz > 0 1\ Y2 > 0
1\ gcd(yl- Yz,Yz) = gcd(x 1 ,x2)]

3. For path /32 (from B to B via statement 2)

[p(x, ji) 1\ Y1 =/= Y2 1\ Y1 ~ Yz] ~ p(x, Y1, Yz - Yd

that is,

[x1 > 0 1\ x2 > 0 1\ y 1 > 0 1\ Yz > 0
1\ gcd(yl, Yz) = gcd(xl> Xz) 1\ Y1 =I= Yz 1\ Y1 ~ Yz]
~ [xl > 0 1\ Xz > 0 1\ Y! > 0 1\ Yz - Y! > 0
1\ gcd(yi,Yz- Yd = gcd(x1 , x 2)]

4. For path y (from B to C)

[p(x,ji) 1\ Y1 = Yz] ~ t/J(x,yl)

that is,

[x1 > 0 1\ x2 > 0 1\ y1 > 0 1\ Yz > 0
1\ gcd(Y!, Yz) = gcd(xl> x2) 1\ Y1 = Yz]
~ Y1 = gcd(x 1 , x 2)

Since the four verification conditions are true, it follows that the program
is partially correct wrt the input predicate x 1 > 0 1\ x2 > 0 and the output
predicate z = gcd(x1 , x2) .

D
3-1 .2 Termination

Next we shall describe a method for proving the termination of flowchart
programs. We si~ply use an ordered set with no infinite decreasing se
quences to establish that the program cannot go through a loop indefinitely.
The most common ordered set used for this purpose is the set of natural
numbers ordered with the usual > (greater than) relation. Since, for any

FLOWCHART PROGRAMS 18 3

n we haven > · · · > 2 > 1 > 0, there are no infinite decreasing sequences
;f natural numbers. Note that we may not use the set of all integers with
the same ordering because it has infinite decreasing sequences such as
n > . · · > 2 > 1 > 0 > - 1 > - 2 > · · · . In general, every well-found
ed set can be used for the purpose of proving the termination of flowchart
programs as we shall demonstrate.

A partially ordered set (W, -<) consists of a nonempty set Wand any
binary relation -< on elements of W which satisfies the following properties:

1. For all a, b, c E W, if a -< b and b -< c, then a -< c (transitivity).
2. For all a, bE W, if a -< b, then b -1< a (asymmetry).
3. For all a E W, a-!< a (irreflexivity).

As usual, we write a -< b or b >- a; a -1< b means "a does not precede b."
Note that the ordering need not be total, i.e., it is possible that for some
a, b E W, neither a -< b nor b -< a holds.

A partially ordered set (W, -<) which contains no infinite decreasing
sequences, a0 >- a 1 >- a2 >- · · · , of elements of W is called a well-founded

set. For example:
(a) The set of all real numbers between 0 and 1, with the usual ordering

<,is partially ordered but not well-founded (consider the infinite decreasing
sequencd > t > i > · · ·).

(b) The set I of integers, with the usual ordering <, is partially
ordered but not well-founded (consider the infinite decreasing sequence
0 > -1 > -2 > ...).

(c) The set N of natural numbers, with the usual ordering <, is well
founded.

(d) If L is any alphabet, then the set L* of all words over L with the
substring relation -< (that is, w1 -< w2 iffw 1 is a proper substring of w2),

is well-founded.

Now, suppose we are given a flowchart program P and an input
predicate <p. To show that P terminates over <p, we propose the following
procedure:

1. Choose a well-founded set (W, -<) .
2. Select a set of cutpoints to cut the loops of the program.
3. With every cutpoint i, associate a function u;(.X, ji) mapping D51 x Dy

into W; that is,

(*) VxVji [u; (x, ji) E w]

If for every path IX from cutpoint i to j with no intermediate cutpoints
which is a part of some loop (i.e., there is also some path from j to i), we

184 VERIFICATION OF PROGRAMS

have
(**) 'v'x'v'Y{cp(x) 1\ Ra(x, ji) => [u;(x, y) >- ui(x, ra(x, ji))J}
then P terminates over cp.

In other words, for any computation, when we move from one cutpoint
to another, there is associated a smaller and smaller element u;(x, ji) of W
Since W is a well-founded set, there is no infinite decreasing sequence of
elements of W, which, in turn, implies that any computation of P must be
finite.

The main drawback of the procedure just described is that conditions
(*) and (**) are too restrictive, and it is possible only rarely to find an
appropriate set of functions u; (x, ji) that will satisfy both conditions. The
problem is that we require that the conditions will be true for all x and ji,
while, in general, it suffices to show (*) and (**) only for those values of x
and ji which can indeed be reached at point i at some stage of the computa
tion. This problem suggests attaching an inductive assertion q;(x, y) to
each cutpoint i in such a way that q; (x, ji) has the property that whenever
the computation of the program reaches cutpoint i, q;(x, ji) is true for the
current values of x and ji. Then we can state a more powerful method for
proving termination, as follows.

Step 1 . Select a set of cutpoints to cut the loops of the program and with
every cutpoint i associate an assertion q;(x, y) such that q;(x, y) are good
assertions. That is, for every path ex from the START point to cutpoint j
(with no intermediate cutpoints), we have

Vx[cp(x) 1\ Ra(x) => qi(x,ra(x))]

and for every path ex from cutpoint i to j (with no intermediate cutpoints),
we have

Step 2. Choose a well-founded set (W, -<) and with every cutpoint i
associate a partial function u;(x, y) mapping Dx x Dy into W such that
u;(x, ji) are good functions. That is, for every cutpoint i, we have

Vx'v'Y[q;(x,y) => u;(x,y)E W]

Step 3. Show that the termination conditions hold. That is, for every path
ex from cutpoint i to j (with no intermediate cutpoints) which is a part of
some loop, we have

'v'x'v'y{q;(x,y) 1\ Ra(x,y) ~ [u;(x,y) >- u/x,ra(x,y))]}

The method just described is summarized in the following theorem.

FLOWCHART PROGRAMS 185

THEOREM 3-2 [WELL-FOUNDED-SETS METHOD (Floyd)]. For a
given flowchart program P and an input predicate cp(x), apply the
following steps: (1) Cut the loops and find "good" inductive assertions;
and (2) choose a well-founded set and find "good" partial functions. If
all the termination conditions are true, then P terminates over <p.

EXAMPLE 3-4
First we prove that the program P 1 of Example 3-1 terminates for every
natural number x. To show that the program terminates over cp(x): x ~ 0,
we use the well-founded set (N, <),that is, the set of natural numbers with
the usual ordering <. We cut the single loop at point B and attach to it
the assertion q(x, ji): y2 ~ x 1\ y3 > 0 and the function u(x, ji): x - Yz

(see Fig. 3-8).

A ----------cp(x): x ~ 0

.-------------<B~---------{ q (x, ~)):
u(x, y:

F

Y2 ~X 1\ Y3 > 0
X - Y2

Figure 3-8 Program P 1 for computing = = [,JX] (termination).

Note that there are two paths of interest here:

Path cx.
1

(from A to B): Ra, is T, and ra, is (0,0, 1).

Path cx.2 (from B to B): Ra2 is Y2 + Y3 ~ x, and
ra

2
is lY1 + l, Y2 + YJ, Y3 + 2).

Our proof consists of three steps. For all integers x, y 1 , Yz, and Y3 :

186 VERIFICATION OF PROGRAMS

Step 1 . q (x, ji) is a good assertion.
For path a 1

cp(x) => q(x, 0, 0, 1)

that is,

X ~ 0 ::> [0 ;;:; X 1\ 1 > OJ

For path a2

[q(x,JI,Y2, Y3) 1\ Yz + Y3;;:; xJ => q(x, yl + 1,yz + y3, YJ + 2)

that is,

[Y2 ;;:; X 1\ Y3 > 0 1\ Y2 + Y3 ~ X J ::> [Y2 + Y3 ~ X 1\ Y3 + 2 > OJ

Step 2. u (x, ji) is a good function.

q(x, ji) => u (x, ji) EN

that is,

[Yz ~ X 1\ Y3 > OJ => x - Y2 ~ 0

Step 3. The termination condition holds.
For path a2

[q(x, ji) 1\ Y2 + Y3 ~ xJ
=> [u (x, yl , yz , YJ) > u(x,yl + 1,yz + y3,Y3 + 2)J

that is,

[Yz ~ x 1\ Y3 > 0 1\ Yz + Y3 ~ xJ => [x- Y2 > x - (y 2 + YJ)J

(Note that path a 1 is not considered because it is not part of any loop.)

Since all three conditions a re true, it follows that the program terminates
for every natural number x.

D

It is straightforward to prove that the program P2 of Example 3-2
terminates over cp(i): x 2 ~ 0 [let qB(x, ji) be y 2 ~ 0 and uB(x, ji) be Y2J
and that the program P3 of Example 3-3 terminates over cp(i) : x 1 > 0 1\

Xz > 0 [let qB(x,ji) be y 1 > 0 1\ y 2 > 0 and uB(x, ji) be max(y~> y2)]. We
proceed with a less trivial example.

FLOWCHART PROGRAMS 187

EXAMPLE 3-5 (Knuth}
The program P4 over the integers (Fig. 3-9) also computes z = gcd(x 1 , x2)

for every pair of positive integers x1 and x2 ; that is, z is the greatest common
divisor of x1 and x2 . We leave it as an exercise for the reader to prove that
the program is partially correct wrt the input predicate cp(i): x 1 > 0 1\

x
2

> 0 and the output predicate t/1 (.X, z) : z = gcd (x1 , x2).t We would
like to prove that P 4 terminates over cp.

X 1 > 0 1\ Xz > 0

r------------8- -- - ---- { qB(~, ~) :
uB(x, y): Yt

Yt > 0 1\ Yz > 0

F

l
qc(x, y): Y1 > o

/ 1\ Yz > 0
/ uc(x, ji) : Y1 + 2yz c •-----'_:::_:.......:....::-'--_..::....:'-,

F

F 5

Figure 3-9 Program P4 for computing z = gcd(x 1 , x 2) (termination) .

Again we use the well-founded set (N, <). We cut the loops of the
program at points B and C and then attach to cutpoint B

qB(x, ji) : Y1 > 0 1\ Yz > 0 and uB(x,ji): Y1

t Let p8 (x,ji) be x, > 0 1\ x, > 0 "y1 > 0 A y2 > 0 1\ y3 ·gcd (Jt . y 2) = gcd(x,,x,) and let pc(x,ji)

be x1 > 0 1\ x, > 0 1\ y 1 > 0 1\ y2 > 0 1\ odd(yd "y3 · gcd(y 1 , y2) = gcd(x1 , x2) .

188 VERIFICATION OF PROGRAMS

and to cutpoint C

qc(x, ji): Y1 > o 1\ Yz > o and

Note that there are six paths of interest in this program:

oc1 (from A to B): R,, is T, and r,, is (x1 , x2 , 1).
oc2 (from B to B via statement 2) : R,

2
is even(yd 1\ even(y2), and

r,2 is (yd2, y2 /2, 2J3).
oc3 (from B to B via arc 3): R,, is even(yd 1\ odd(Yz), and

r,, is (yd 2, y2 , Y3).
oc4 (from B to C): R,

4
is odd(yd, and r,

4
is (y1, y2 , Y3).

oc5 (from C to C via arc 5): R,, is even(y2), and r,, is (y1,Yz/2,J3).
oc6 (from C to C via statement 6): R,

6
is odd(y2) 1\ y1 =f Yz, and

r,. is (yz, IY1 - YzJ /2, Y3).

Again our proof consists of three steps. For all integers x, y 1 , Yz, and

Step 1 . q8 and qc are good assertions.
For path oc1

For path oc2

qB(x, ji) 1\ even(y1) 1\ even(y2) => q8 (x, y1/2, y2 / 2, 2Y3)

For path oc3

For path oc4

For path oc5

For path oc6

Step 2 . u8 and Uc are good functions.

qB (x, .Y) => u8 (x, y) E N

qc(x, ji) => uc(x, ji) E N

FLOWCHART PROGRAMS WITH ARRAYS 189

Step 3. The termination conditions hold.

For path oc2

[q8 (x,ji) 1\ even(y1) 1\ even(y2)]

=> [u8 (x,y1,yz,Y3) > uB(x,y1 /2,yz / 2, 2y3)]

For path oc3

[q8 (x, y) 1\ even(y1) 1\ odd(y2)]

=> [uB(x,y1,yz,y3) > uB(x,y1 /2, yz,Y3)]

For path oc5

[qc(.X,y) 1\ even(yz)] => [uc(.X, y1,yz,Y3) > uc(.X, y1,Yz / 2,y3)]

For path oc6

[qc(x, ji) 1\ odd(yz) 1\ Y1 =f Yz]

=> [uc(x,y1,yz,Y3) > uc(.X,yz,JY1- YzJ /2,y3)]

Substituting the given assertions q8 and qc and the given functions u8 and
uc, all the above statements can easily be verified ; therefore it follows
that the program terminates for every pair of positive integers x 1 and x2 .

0

3-2 FLOWCHART PROGRAMS WITH ARRAYS

An array is a programming feature used for describing a large family of
related program variables. For example, to describe a group of 21 integer
variables, instead of using letters A, B, C, . . . , T, U, we prefer to identify
the variables as S[OJ,S[1], . .. ,S[20], where Sis a 21-element array;
this notation corresponds to the mathematical subscript notation S0 ,

S1 , ... , S2 0 . An expression like S[i + jJ indicates the (i + j)th element
(0 ~ i + j ~ 20) in this family, depending on the current value of i + j .

3-2.1 Partial Correctness

In this section we shall prove the partial correctness of several flowchart
programs which use arrays and discuss some of the difficulties involved in
treating arrays. However, in our examples we shall ignore one problem
concerning the correctness of flowchart programs with arrays: We shall
not verify that the array subscript actually lies within the boundaries of
the array. For instance, suppose that a program uses an array S of 21

