
TEXTS AND MONOGRAPHS IN COMPUTER SCIENCE 

THE SCIENCE 
OF PROGRAMMING 
David Gries 

[j(l Springer-Verlag 
~ New York Heidelberg Berlin 



Part 0 
Why Use Logic? 
Why Prove Programs Correct? 

A story 

We have just finished wntmg a large program (3000 lines). Among 
other things, the program computes as intermediate results the quotient q 
and remainder r arising from dividing a non-negative integer x by a posi­
tive integer y. For example, with x = 7 and y = 2, the program calculates 
q = 3 (since 7+2 = 3) and r = I (since the remainder when 7 is divided by 
2 is 1). 

Our program appears below, with dots " ... " representing the parts of 
the program that precede and follow the remainder-quotient calculation. 
The calculation is performed as given because the program will sometimes 
be executed on a micro-computer that has no integer division, and porta­
bility must be maintained at all costs! The remainder-quotient calculation 
actually seems quite simple; since -':- cannot be used, we have elected to 
repeatedly subtract divisor y from a copy of x, keeping track of how 
many subtractions are made, until another subtraction would yield a nega­
tive integer. 

r:= x; q:= 0; 
while r >y do 

begin r:= r-y; q := q+l end; 

We're ready to debug the program. With respect to the remainder­
~~otient calculation, we're smart enough to realize that the divisor should 
illitially be greater than 0 and that upon its termination the variables 
should satisfy the formula 



2 Part 0. Why Use Logic? Why Prove Programs Correct? 

x = y*q + r , 

so we add some output statements to check the calculations: 

write(' dividend x =', x, 'divisor y =', y ); 
r:= x; q := 0; 
while r >y do 

begin r:= r-y; q:= q+I end; 
write('y*q +r =', y*q +r); 

Unfortunately, we get voluminous output because the program segment 
occurs in a loop, so our first test run is wasted. We try to be more selec­
tive about what we print. Actually, we need to know values only when an 
error is detected . Having h('ard of a new feature just inserted into the 
compiler, we decide to try it. If a Boolean expression appears within 
braces { and } at a point in the program, then, whenever "flow of control" 
reaches that point during execution, it is checked: if false, a message and 
a dump of the program variables are printed; if true, execution continues 
normally. These Boolean expressions are called assertions, since in effect 
we are asserting that they should be true when flow of control reaches 
them. The systems people encourage leaving assertions in the program, 
because they help document it. 

Protests about inefficiency during production runs are swept aside by 
the statement that there is a switch in the compiler to turn off assertion 
checking. Also, after some thought, we decide it may be better to always 
check assertions -detection of an error during production would be well 
worth the extra cost. 

So we add assertions to the program: 

{y >O} 
r:= x; q:= 0; 

(I) whiler>ydo 
begin r := r -y; q := q +I end; 

{x=y*q+r} 

Testing now results in far less output, and we make progress. Assertion 
checking detects an error during a test run because y is 0 just before a 
remainder-quotient calculation, and it takes only four hours to find the 
error in the calculation of y and fix it. 



part 0. Why Use Logic? Why Prove Programs Correct? 3 

But then we spend a day tracking down an error for which we received 
no nice false-assertion message. We finally determine that the remainder­
quotient calculation resulted in 

x =6, y =3, q =I, r =3. 

Sure enough, both assertions in (I) are true with these values; the problem 
is that the remainder should be less than the divisor, and it isn't. We 
determine that the loop condition should be r )! y instead of r > y. If 
only the result assertion were strong enough -if only we had used the 
assertion x = y*q + r and r <y- we would have saved a day of work! 
Why didn't we think of it? 

We fix the error and insert the stronger assertion: 

{y >O} 
r:=x; q:=O; 
while r )! y do 

begin r:= r-y; q:= q+I end; 
{x =y*q +rand r <y} 

Things go fine for a while, but one day we get incomprehensible output. 
It turns out that the quotient-remainder algorithm resulted in a negative 
remainder r = -2. But the remainder shouldn't be negative! And we find 
out that r was negative because initially x was -2. Ahhh, another error 
in calculating the input to the quotient-remainder algorithm -x isn't sup­
posed to be negative! But we could have caught the error earlier and 
saved two days searching, in fact we should have caught it earlier; all we 
had to do was make the initial and final assertions for the program seg­
ment strong enough. Once more we fix an error and strengthen an asser­
tion: 

{0 :(;x and 0 <y} 
r := x; q := 0; 
while r )! y do 

begin r : = r -y ; q : = q +I end; 
{x =y*q +rand O:(;r <y} 

It sure would be nice to be able to invent the right assertions to use in a 
less ad hoc fashion. Why can't we think of them? Does it have to be a 
trial-and-error process? Part of our problem here was carelessness in 
specifying what the program segment was to do - we should have written 



4 Part 0. Why Use Logic? Why Prove Programs Correct? 

the initial assertion (0 ~ x and 0 <y) and the final assertion (x = y*q + r 
and 0 ~r <y) before writing the program segment, for they form the 
definition of quotient and remainder. 

But what about the error we made in the condition of the while loop? 
Could we have prevented that from the beginning? Is there is a way to 
prove, just from the program and assertions, that the assertions are true 
when flow of control reaches them? Let's see what we can do. 

Just before the loop it seems that part of our result , 

(2) x =y*q +r 

holds, since x = r and q = 0. And from the assignments in the loop body 
we conclude that if (2) is true before execution of the loop body then it is 
true after its execution, so it will be true just before and after every itera­
tion of the loop. Let's insert it as an assertion in the obvious places, and 
let's also make all assertions as strong as possible: 

{O~x and O<y} 
r := x; q := 0; 
{O~r andO<y andx=y*q+r} 
while r ~ y do 

begin {O~r and O<y ~rand x =y*q +r} 
r:= r-y; q:= q+l 
{O~r andO<y andx=y*q+r} 

end; 
{O~r<y andx =y*q+r} 

Now, how can we easily determine a correct loop condition, or, given the 
condition, how can we prove it is correct? When the loop terminates the 
condition is false. Upon termination we want r <y, so that the comple­
ment, r ~ y must be the correct loop condition. How easy that was! 

It seems that if we knew how to make all assertions as strong as possi­
ble and if we learned how to reason carefully about assertions and pro­
grams, then we wouldn't make so many mistakes, we would know our 
program was correct, and we wouldn't need to debug programs at all! 
Hence, the days spent running test cases, looking through output and 
searching for errors could be spent in other ways. 



part 0. Why Use Logic? Why Prove Programs Correct~ 5 

Discussion 
The story suggests that assertions, or simply Boolean expressions, are 

really needed in programming. But it is not enough to know how to write 
Boolean expressions; one needs to know how to reason with them: to sim­
plify them, to prove that one follows from another, to prove that one is 
not true in some state, and so forth. And, later on, we will see that it is 
necessary to use a kind of assertion that is not part of the usual Boolean 
expression language of Pascal, PL/ I or FORTRAN, the "quantified" 
assertion. 

Knowing how to reason about assertions is one thing; knowing how to 
reason about programs is another. In the past 10 years, computer science 
has come a long way in the study of proving programs correct. We are 
reaching the point where the subject can be taught to undergraduates , or 
to anyone with some training in programming and the will to become 
more proficient. More importantly, the study of program correctness 
proofs has led to the discovery and elucidation of methods for developing 
programs. Basically, one attempts to develop a program and its proof 
hand-in-hand, with the proof ideas leading the way! If the methods are 
practiced with care, they can lead to programs that are free of errors , that 
take much less time to develop and debug, and that are much more easily 
understood (by those who have studied the subject). 

Above, I mentioned that programs could be free of errors and, in a 
way, I implied that debugging would be unnecessary. This point needs 
some clarification. Even though we can become more proficient in pro­
gramming, we will still make errors, even if only of a syntactic nature 
(typos). We are only human. Hence, some testing will always be neces­
sary. But it should not be called debugging, for the word debugging 
implies the existence of bugs, which are terribly difficult to eliminate. No 
matter how many flies we swat, there will always be more. A disciplined 
method of programming should give more confidence than that! We 
~hould run test cases not to look for bugs, but to increase our confidence 
In a program we are quite sure is correct; finding an error should be the 
exception rather than the rule. 

With this motivation, let us turn to our first subject, the study of logic. 


	ADPC8D0.tmp
	New HRSC Appointment Request


