
 1

On Variations of Peterson s Mutual Exclusion Algorithm
by

Ross Lee Graham
Kazakhstan Institute of Management Economics and Strategic Research

ross@rosslg.com
and

Ali Nademi
Mid Sweden University ITM

seyed_@hotmail.com

Abstract
Mutual exclusion algorithms used for concurrent
processes are designed to permit only exclusive
access to shared critical sections. In 1981 the most
concise version presented for two concurrent
processes was Peterson s Algorithm. Peterson used
the OR operator in the decision control.
Tanenbaum uses a claimed version of Peterson s
Algorithm that uses the AND operator in the
decision control and there is no resetting of the
flags. We show that this AND version leads to a
trivialization of Peterson's original form. The first
cycle, which looks interleafed, reverts to batch
processing. Since batch processing is in serial
order, this eliminates the need for a mutual
exclusion algorithm designed for concurrent
processes. Using Peterson's original OR operator
and resetting the flags as he does, every run is
interleafed. Furthermore, as should be expected, a
DeMorgan on the Peterson control operator yields
an AND version that sustains the interleafing
identical to Peterson s original form. However,
this form is clearly not simpler than the original
OR form. It requires three additional NOT
operators and the flags must still be reset.

Introduction
We distinguish two general modes for obtaining
mutual exclusion of concurrent processes. One
mode concerns control of the processing threads.
The second mode controls the data used by the
processes.

Mutual exclusion using data control is found in
several well-known data locking algorithms used
in databases. Peterson s algorithm, and the main
concern for this paper, addresses the traffic control
problem of threads for mutual exclusion from
critical sections in concurrent processing.

It is often difficult to design correct coordination
schemes for asynchronous activities, such as
process control, traffic control, stock control,
banking applications, centralized computer
services, managing information flow in large
organizations, and etc. When we deal with

information systems with several processes
running concurrently, the mutual exclusion
problem arises.

Peterson s Algorithm
A thread solution for the mutual exclusion problem
was presented by Dekker in 1962. In 1981, G. L.
Peterson presented a remarkable and quite elegant
reduction that requires only four lines of
instructions. The underpinning logic for his
solution follows Dekker s intent, to interleaf the
concurrent threads such that a mutual exclusion is
sustained for all critical sections. In both
algorithms, both the turn variable and status
flags (here Q1 and Q2) are used. The Exhibit
below shows Peterson s Algorithm as he presented
it in Myths about the Mutual Exclusion Problem.
In the beginning, the flags Q1 and Q2 can have the
value false, and the turn variable can have either
the value of 1 or of 2.

/*trying protocol for P1*/
Q1 = true;
TURN = 1;
wait until not Q2 or TURN == 2;
Critical section
/* exit protocol for P1*/
Q1 = false

/*trying protocol for P2*/
Q2 = true;
TURN = 2;
wait until not Q1 or TURN == 1;
Critical section
/* exit protocol for P2*/
Q2 = false

Exhibit: Peterson s Algorithm

We address first how Dekker s Algorithm can be
so reduced and still be correct. The first issues that
we inspect are whether any concurrent process
controlled by Peterson s version can end up in a
deadlock or lockout (starvation). We can show that
neither process can be locked out [1]. To prove this
we can assume that P1 is in its wait loop. Would
P1 be stuck there? P2 in the meantime has only
three alternatives:

mailto:ross@rosslg.com
mailto:seyed_@hotmail.com

 2

1. Not try to enter the critical section
2. Wait in its loop
3. Constantly cycle through its protocol

In the first case it is easy to show that if P2 does
not need to enter the critical section that the flag
Q2 remains false so that P1 finds Q2 false and
exits the waiting loop. Therefore, the second case
in the list can never happen; neither of them end
up in an infinite waiting state because the turn
variable can only belong to one of the processes, it
is a 1 or a 2 (showing which process it belongs to).
Finally in the third and last condition, P2 sets the
turn variable to 2 and as the algorithm shows,
P2 never changes the turn variable back to 1
again. Thereby P1 is never stuck in its waiting
loop and a deadlock or lockout is impossible.

The second issue is whether it can be guaranteed
that the mutual exclusion is preserved. Despite all
odds if both processes find themselves in the
critical section simultaneously, then both flags Q1
and Q2 would be equal to true. But in the waiting
loop another condition must be tested, namely, the
turn variable. The turn variable can only take
the value of one of the processes and thereby the
testing part in the other process waiting-loop will
fail. The result is that only one process can enter
the critical section first and when it is finished the
second process enters. Mutual exclusion is thereby
guaranteed [1].

A third issue is whether interleafing is always
sustained for the two processes, which is a defined
condition for using a mutual exclusion algorithm.
Or whether the algorithm degenerates to batch
processing (processes running in serial order),
which excludes the necessity of a mutual exclusion
algorithm.

Verification of Peterson s Algorithm with SPIN
We used SPIN to verify Peterson s mutual
exclusion algorithm. By inspecting the verification
outputs, the simple recursion of the interleafing of
concurrent processes was rendered visible. This
also renders obvious a simple induction proof for
the algorithm. SPIN shows that no errors were
counted in the recursion. This indicates that
assertion violations are impossible in Peterson s
Algorithm.

We set our first simulation to run 500 cycles.
However, the recursion became visible in the
second cycle and shows no changes in the
interleafing in any of the subsequent cycles. By
inspecting the recursion pattern it is evident that
the simulator creates 2 processes, SPIN named
proc 0 and proc 1 (referenced in our text as P1 and
P2) and that both of these processes are

interleafed throughout the run, sustaining mutual
exclusion for the critical sections. That Peterson s
Algorithm solves the mutual exclusion problem for
two processes running concurrently, i.e., sustaining
the interleafing, becomes an important point when
considering some variants that are claimed as
improvements on his original form.

Peterson therefore succeeded in developing a
simpler solution to the mutual exclusion problem,
and his solution can replace the more complex
solutions that not only require more complex
proofs, but are more difficult to implement.

SPIN Verification of the dual variant of
Peterson s Algorithm
Is it possible to maintain the same interleafing as
Peterson s original form using variations of it?

Starting with Peterson s control condition where
we find the OR operator in the form (p Ú q),
which underpins the key line known as the
waiting line:

(flag[j] == false || turn != i) ->
/* wait until true */

By separating this line into its two component
statements we equate these to p and q such that:
p flag[j] == false
q turn != i

Therefore, with a DeMorgan we obtain

~ (~p Ù ~q),

which we translate as follows:

(flag [j] == false) goes to
(flag [j] == true)

(turn != i) goes to
(turn ==i)

(flag [j] == false || turn != i) goes to
((flag [j] == false || turn != i) ==
(false))

(flag [j] == true && turn == i) goes to
((flag [j] == true && turn == i) == false)

Here we verified with SPIN that this AND operator
variant to Peterson s algorithm is also assertion
violation impossible. There are no errors counted,
same as the original version.

Our first simulation outputs were set to 500 cycles.
Again, only a few were actually required to render
visible the sustained recursion of interleafing. We
clearly obtain that both processes are executed in
an interleafed manner. Not many cycles are
required to see a sustained recursion where no flag
is blocked and both flags reset. However, this form

 3

is not simpler than Peterson s original version
since it requires the addition of three negations.

Verification attempts at other claimed variants
of Peterson s Algorithm with SPIN
During this research we also came across another
attempt on Peterson s Algorithm in an alleged
variant form. It is further claimed to be an
improvement. In many sources [25] [2] [15] [22]
[23] [24] [9] we have seen that the OR operator is
replaced by the AND operator.

Andrew S. Tanenbaum, professor of computer
science at Vrije Universiteit in Amsterdam,
Netherlands, in his popular book Modern
Operating Systems [9] has also applied one of
these alleged AND forms of Peterson s Algorithm
as follows:

#define FALSE 0
#define TRUE 1
#define N 2
/*number of processes*/

int turn;
/*whose turn is it?*/
int interested[N]; /*all
values initially 0(FALSE)*/

void enter_region(int process);
/*process is 0 or 1*/
{

int other;
/*number of the other process*/

other = 1-process; /*the
opposite of process*/

interested[process] = TRUE;
/*show that you are interested*/

turn = process;
/*set flag*/

while(turn == process &&
interested[other] == TRUE) /*null
statement*/
}

void leave_region(int process)
/*process: who is leaving*/
{

interested[process]= FALSE;
/*indicate departure from critical
section*/
}

Tanenbaum references the original version of
Peterson s Algorithm [1] but there is no indication
of why this AND version was used.

Professor Jim Mooney from Ohio State University
in [15] declares that problems would occur if we
replace the AND operator by the OR operator. He
states that since a process will be forced to wait if
either condition is true, it will wait if it does not
have the turn, even if the other process is not busy.
Moreover, since it is possible for both processes to
set their flags to busy, they may both wait even
though one if them has the turn. Progress is
violated, and deadlock is possible . Our results

show that his statement is not correct; deadlock is
not possible in the OR-variant.

We created the PROMELA version of the alleged
improvement of Peterson s Algorithm based on the
AND operator. The code is almost the same as the
original version.

In the original version of Peterson s Algorithm we
have the OR operator as follows:

(flag[j] == false || turn != i) ->
/* wait until true */

The alleged improvement on Peterson s Algorithm
based on the AND operator gives:

(flag[j] == true && turn == j) ->
/* wait until true */

By inspecting the lines in the SPIN outcome, we
observe that no errors are counted. This indicates
that assertion violations are also impossible in this
alleged variant of Petersons s Algorithm.

State-vector 20 byte, depth
reached 19, errors: 0

Why did Peterson in [1] used the OR operator
when we clearly have obtained that the AND
operator in the alleged variant works without any
further error or problems? Finally, what was the
motive to change the OR to the AND operator? We
did more tests, to find the answers. This led us to
understand why the mistaken AND form has
passed scrutiny and has been accepted as if correct.

For the first test we ran the simulation for 500
steps. An inspection of the outputs shows again
that the simulator creates 2 processes, named proc
0 and proc 1. But for the alleged variants we can
see that both of these processes are just interleafed
in the first cycle (when the flags were set for the
run), afterwards these processes ran in serial order
(no interleafing, i.e., batch processing) and the
flags were never reset. These runs are not
interleafed. This is what led us to call this variant
alleged . This alleged variant of Petersons s

Algorithm does not solve the interleaf requirement
for concurrency of two processes.

Testing 140 cycles gave us more than sufficient
data for revealing the recursion. As it shows by the
cnt variable we can see that this algorithm does not
allow these two processes to enter the critical
section at the same time, but once again the
processes are put in serial order and this is not a

 4

solution that interleafs process segments.

By adapting De Morgan s law we logically show
that the simplest acceptable AND variant is the
dual variant of the original OR version. Running
the DeMorgan variant by SPIN we received exactly
the same result as the original OR version.

Conclusion
Based on this work we conclude that the simplest
AND variant of Peterson s Algorithm that works is
the DeMorgan on the original OR version. We
observe also that it is not simpler than his original
version. Furthermore, the AND version promoted
by Mooney [25] and others as a simplification of
Peterson s Algorithm is now proven to be a false
claim and needs to be systematically eliminated
from texts and papers that use it.

Future work
One of the issues to consider for mutual exclusion
algorithms is their scalability. Peterson showed in
his first paper [1] an n-process version of his
Algorithm developed by his colleague at Rochester,
Lydia Hrechanyk (now deceased).

/* protocols for PI*/
for j = 1 to n-1 do
{
 Q[i] = j;
 TURN[j] = i:

wait until ("k ¹ i, Q[k] < j) or
 TURN[j] ¹ i
}
Critical section
Q[i] = 0

Exhibit : Simple n-Process Peterson s Mutual Exclusion
Algorithm

It is based on repeated use of his two process
algorithm. It requires 2n-1 shared variables of size
n, etc. We have yet to complete a successful SPIN
run using this form.

References

Articles
[1] 1981 G. L. Peterson, Myths about

Mutual Exclusion Problem , Information
Processing Letters, Vol. 12, number 3, pp.
115-116

[2] 2003 Vikram Goenka, Peterson s
Algorithm in a Multi Agent Database
System , Research Paper for 433-481,
Knowledge Representation and
Reasoning, July

Books
 [9] Modern Operating Systems, second

edition
Andrew S. Tanenbaum, Prentice Hall
International, 2001,

ISBN 0-13-092641-8

Web based materials
[15] A Simpler Solution: Peterson s

Algorithm
Jim Mooney, Ph. D. The Ohio State
University
http://www.csee.wvu.edu/~jdm/classes/cs3
56/notes/mutex/Peterson.html

[22] Operating Systems: Steps towards
Peterson's Mutual Exclusion Algorithm
Dr. Robert Kline, West Chester University
http://www.cs.wcupa.edu/~rkline/OS/Pete
rson.html

[23] Proof of a Solution to the Critical
Section Problem
Jayson Rock
http://www.cs.uwm.edu/classes/cs537/CS_
AlgProof.html

[24] Typical critical section program
Gonzalo Ramos, Ph.D. candidate at the
University of Toronto
http://www.dgp.toronto.edu/~bonzo/ta209
/peterson.txt

[25] Wikipedia, the Free Encyclopedia
http://en.wikipedia.org

http://www.csee.wvu.edu/~jdm/classes/cs3
http://www.cs.wcupa.edu/~rkline/OS/Pete
http://www.cs.uwm.edu/classes/cs537/CS_
http://www.dgp.toronto.edu/~bonzo/ta209
http://en.wikipedia.org

