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Abstract

This document provides a computational semantics for three versions of First-Order Logic
(FOL): minimal, intuitionistic, and classical. Evidence semantics is a computational expla-
nation of the meaning of first-order statements. We take this meaning to be the idea or concept
expressed by first-order formulas relative to a particular type D as the domain of discourse and
to propositional functions over D as the predicates, i.e. relative to a first-order model. A formula
is computationally valid with respect to this semantics provided there is evidence for it in every
computationally meaningful first-order model. The evidence gives a computational reason that
the formula is true. This explanation provides a framework for thinking of validity with respect
to oracle-computations, and that is perhaps sensible as a relative computability semantics for
classical first-order logic.

The document also presents refinement style rules for various first-order logics including minimal
logic, intuitionistic logic, and classical logic. Refinement style is a top down version of Gentzen’s
sequent calculus and is closely related to tableaux style proofs. It is noted that these rules are
sound for evidence semantics as it applies to all three variants of FOL.

1 Evidence Semantics

This section reviews the semantics of evidence along the lines of [8]. Given any first-order
signature L of predicates (relations) Pni

i over a domain D of individuals of a model M for L, we
assign to every formula A over this signature a type of objects denoted [A]M called the evidence
for A with respect to M. We normally leave off the subscript M when there is only one model
involved. Here is how evidence is defined for the various kinds of first-order propositional
functions. This definition will also implicitly provide a syntax of first-order formulas.

1.1 First-order formulas and their meaning

1. atomic propositional functions The domain of discourse, D can be any constructive
type in the sense of data types such as N the natural numbers or R the computable real
numbers or graphs or lists or trees and so forth. We do not analyze its structure further and
do not examine the equality relation on the type when dealing with the pure first-order
theory, as is standard practice. Pni

i are interpreted as functions from Dni into P the atomic
propositions, and for the atomic proposition Pni

i (a1, ..., ani), the basic evidence must be
supplied, say objects pi if there is evidence, otherwise the evidence type is empty. We
include a designated atomic proposition (for minimal logic), ⊥, called bottom, whose
evidence type can be {?}, or the empty type {}.

2. conjunction [A&B] = [A]× [B], the Cartesian product of the evidence types.
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3. existential [∃x.B(x)] = x : [D]M × [B(x)], the dependent product.

4. implication [A ⇒ B] = [A] → [B], the function space1

5. universal [∀x.B(x)] = x : [D]M → [B(x)], dependent function space.

6. disjunction [A ∨B] = [A] + [B], disjoint union.

7. false [False] = {} empty set, void type.

Intuitively, a formula A is satisfied in a model M if and only if there is evidence in [A]M. It is
easy to prove a semantic equivalence theorem as done in the semantics of evidence articles [8].

Reference Theorem : For any model M of signature L and any first-order formula A,

|=M A iff ∃a ∈ [A]

.

1.2 Proof expressions

Next we observe that we can assign meaning to proofs. They can be considered either as terms in
the meta logic or as terms in the object logic, according to the “proofs as terms” principle (PAT).
Here we view them as terms in the meta logic in order to keep the object logic standard. The
rules include constraints on the subexpressions of a proof. This is especially natural in refinement
style logics and tableaux systems [5, 17] as used in CTT and studied by Bates [4] and Griffin [12].
For each rule we provide a name that is the outer operator of a proof expression with slots to be
filled in as the proof is developed. The partial proofs are organized as a tree generated in two
passes. The first pass is top down, driven by the user creating terms with slots to be filled in on
the algorithmic bottom up pass once the downward pass is complete. Here is a simple proof of the
(constructive) tautology A ⇒ (B ⇒ A).

` A ⇒ (B ⇒ A) by λ(x.slot1(x))
x : A ` (B ⇒ A) by slot1(x)

In the next step, slot1(x) is replaced at the leaf of the tree by λ(y.slot2(x, y)) to give:
` A ⇒ (B ⇒ A) by λ(x.slot1(x))

x : A ` (B ⇒ A) by λ(y.slot2(x, y)) for slot1(x)
x : A, y : B ` A by slot2(x, y)

When the proof is complete, we see the slots filled in at each inference step as in:
` A ⇒ (B ⇒ A) by λ(x.λ(y.x))

x : A ` (B ⇒ A) by λ(y.x)
x : A, y : B ` A by x

The variable x fills slot2 and the lambda term λ(y.x) fills slot1. The complete proof expression is
thus the lambda term λ(x.λ(y.x)). It is easy to see intuitively that the meaning of this term is
precisely the evidence needed to show that the formula is true. If we used typed lambda terms, the
proof term would be λ(a : A.(λ(y : B.x))). (We could make the proof expression more standard if
we used a name such as impin instead of λ; we prefer to use notation that makes the semantic
ideas clearer than the traditional rule names.

Construction of the proof term requires that we say how the slots are to be filled as the proof
progresses. In the above example there are no choices. We provide annotations in the rules that
spell out the substitutions. For example, we say by λ(y.slot2) into slot1.

1This function space is interpreted type theoretically and is assumed to consist of effectively computable determin-
istic functions.
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We present the rules in a top down style showing the construction rules first, often called the
introduction rules because they introduce the canonical proof terms or called the right hand side
rules because they apply to terms on the right hand side of the turnstile. So typical names seen in
the literature are these: for & we say Andintro or AndR; for ⇒ we say Imp− intro or ImpR; for
∨ we say Or − intror or OrRr, and Or − introl or OrRl, for ∀x we say All − intro or AllR, and
for ∃ we say Existsintro or ExistsR.

For each of these construction rules, the constructor needs subterms which build the component
pieces of evidence. Thus for AndR the full term will have slots for the two pieces of evidence
needed, the form will be AndR(slot1, slot2) where the slots are filled in as the proof tree is
expanded. When the object to be filled in depends on a new hypothesis to be added to the left
hand side of the turnstile, the rule name must supply a unique label for the new hypothesis, so we
see a rule name like ImpR(x.slot(x)) or AllR(x.slot(x)). In the case of the rule for ∃, there is a
subtlety. The rule name provides two slots, but the second depends on the object built for the
first, so we see rule names such as ExistsR(a; slot(a)).

For each connective and operator we also have rules for their occurrence on the left of the
turnstile. These are the rules for decomposing or using or eliminating a connective or operator.
They tell us how to use the evidence that was built with the corresponding construction rules,
and the formula being decomposed is always named by a label in the list of hypotheses, so there is
a variable associated with each rule application. Here are typical names: for & we say
Andelim(x) or AndL(x). However, there must be more to this rule name because typically new
formulas are added to the hypothesis list, one for each of the conjuncts, so we need to provide
labels for these formulas. Thus the form of elimination for & is actually AndL(x; l, r.slot(l, r))
where l stands for the left conjunct and r for the right one.

Rule names such as AndR, AndL, OrRl, OrRr, OrL, and so forth are suggestive in terms of the
details of the proof system, but they are not suggestive of the structure of the evidence, the
semantics. We will use rule names that define the computational forms of evidence. The
evaluation rules for these proof terms are given as in ITT or CTT, for instance in the book
Implementing Mathematics [9] or in the Nuprl Reference Manual [15].
So instead of AndR(a; b) where a and b are the subterms built by a completed proof by
progressively filling in open slots, we use pair(a; b) or even more succinctly < a, b >, and for the
corresponding decomposition rule we use spread(x; l, r.t(l, r)) where the binding variables l, r have
a scope that is the subterm t(l, r). This term is a compromise between using more familiar
operators for decomposing a pair p such as first(p) and second(p) or p.1 and p.2 with the usual
meanings, e.g., first(< a, b >) =< a, b > .1 = a. The reason to use spread is that we need to
indicate how the subformulas of A&B will be named in the hypothesis list.

The decomposition rules for A ⇒ B and ∀x.B(x) are the most difficult to motivate and use
intuitively. Since the evidence for A ⇒ B is a function λ(x.b(x)), a reader might expect to see a
decomposition rule name such as apply(f ; a) or abbreviated to ap(f ; a). However, the standard
Gentzen sequent-style proof rule for decomposing an implication has this form:
H, f : A ⇒ B,H ′ ` G by ImpL on f
1. H, f : A ⇒ B,H ′ ` A
2. H, f : A ⇒ B, v : B,H ′ ` G

As the proof proceeds, the two subgoals 1 and 2 with conclusions A and G respectively will be
refined, say with proof terms g(f, v) and a respectively. We need to indicate that the value v is
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ap(f ; a), but at the point where the rule is applied, we only have slots for these subterms and a
name v for the new hypothesis B. So the rule form is apseq(f ; slota; v.slotg(v)) where we know
that v will be assigned the value ap(f ; slota) to “sequence” the two subgoals properly. So apseq is
a sequencing operator as well as an application, and when the subterms are created, we can
evaluate the term further as we show below. We thus express the rule as follows.
H, f : A ⇒ B,H ′ ` G by apseq(f ; slota; v.slotg(v))
H, f : A ⇒ B, v : B,H ′ ` G by slotg(v)
H, f : A ⇒ B,H ′ ` A by slota
We can evaluate the term apseq(f ; a; v.g(v)) to g(ap(f ; a)) or more succinctly to g(f(a)). This
simplification can only be done on the final bottom up pass of creating a closed proof expression,
one with no slots.
It would make sense to allow a rule of this form
H, f : A ⇒ B,H ′ ` G by apseq(f ; slota; v.slotg(v))
H, f : A ⇒ B, v : B,H ′ ` G by slotg(ap(f ; slota))
H, f : A ⇒ B,H ′ ` A by slota
In this form, the variable v is not used in the extract and is present only to indicate where the
application of the function named by f is to be applied. In the case of the All Decomposition
rule, we can make this idea more explicit because we already have the argument to f specified in
the rule, the term a.
Another variant we use in the main theorem records constraints on v as follows:

H, f : A ⇒ B, H ′ ` G by apseq(f ; slota; v.slotg(v))
H, f : A ⇒ B, H ′ ` A by slota
H, f : A ⇒ B, v = ap(f ; slota), v : B, H ′ ` G by slotg(ap(f ; slota))

With this introduction, we hope that the following rules will make good sense. These rules define
what we will call the pure proof expressions.

1.3 First-order refinement style proof rules over domain of discourse D

Minimal Logic
Construction rules

• And Construction

H ` A&B by pair(slota; slotb)
H ` A by slota
H ` B by slotb

• Exists Construction2

H ` ∃x.B(x) by pair(d; slotb(d))
H ` d ∈ D by obj(d)
H ` B(d) by slotb(d)

• Implication Construction

H ` A ⇒ B by λ(x.slotb(x)) new x
H, x : A ` B by slotb(x)

• All Construction

H ` ∀x.B(x) by λ(x.slotb(x)) new x
H, x : D ` B(x) by slotb(x)

2Also see Alternative Rules below.
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• Or Construction

H ` A ∨B by inl(slotl)
H ` A by slotl

H ` A ∨B by inr(slotr)
H ` B by slotr

Decomposition rules

• And Decomposition

H,x : A&B,H ′ ` G by spread(x; l, r.slotg(l, r)) new l, r
H, l : A, r : B, H ′ ` G by slotg(l, r)

• Exists Decomposition

H,x : ∃y.B(y),H ′ ` G by spread(x; d, r.slotg(d, r)) new d, r
H, d : D, r : B(d),H ′ ` G by slotg(d, r)

• Implication Decomposition

H, f : A ⇒ B, H ′ ` G by apseq(f ; slota; v.slotg[ap(f ; slota)/v]) new v3

H, f : A ⇒ B, H ′ ` A by slota
H, f : A ⇒ B, H ′, v : B ` G by slotg(v)

• All Decomposition

H, f : ∀x.B(x),H ′ ` G by apseq(f ; d; v.slotg[ap(f ; d)/v])
H, f : ∀x.B(x),H ′ ` d ∈ D by obj(d)
H, f : ∀x.B(x),H ′, v : B(d) ` G by slotg(v)4

• Or Decomposition

H, y : A ∨B, H ′ ` G by decide(y; l.leftslot(l); r.rightslot(r))
1. H, l : A, H ′ ` G by leftslot(l)
2. H, r : B,H ′ ` G by rightslot(r)

• Hypothesis

H, d : D,H ′ ` d ∈ D by obj(d)

H,x : A,H ′ ` A by hyp(x)
We usually abbreviate the justifications to by d and by x respectively.

Intuitionistic Rules

• False Decomposition

H, f : False, H ′ ` G by any(f)

This is the rule that distinguishes intuitionistic from minimal logic. We use the constant
False for intuitionistic formulas and ⊥ for minimal ones to distinguish the logics. In
practice, we would use only one constant, say ⊥, and simply add the above rule with ⊥ for
False to axiomatize iFOL. However, for our results it’s especially important to be clear
about the difference, so we use both notations.

3This notation shows that ap(f ; slota) is substituted for v in g(v). In the CTT logic we stipulate in the rule that
v = ap(f ; slota) in B.

4In the CTT logic, we use equality to stipulate that v = ap(f ; d) in B(v) just before the hypothesis v : B(d).
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Note that we use the term d to denote objects in the domain of discourse D. In the classical
evidence semantics, we assume that D is non-empty by postulating the existence of some d0 in it.
Also note that in the rule for False Decomposition, it is important to use the any(f) term which
allows us to thread the explanation for how False was derived into the justification for G. This
will be important in proof construction from evidence.
Structural Rules

• Cut rule

H ` G by CutC(x.slotg(slotc)) new x
1. H,x : C ` G by slotg(x)
2. H ` C by slotc.

Classical Rules

• Non-empty Domain of Discourse

H ` d0 ∈ D by obj(d0)

• Law of Excluded Middle (LEM)

Define ∼A as (A ⇒ False)

H ` (A ∨ ∼A) by magic(A)

Note that this is the only rule that mentions a formula in the rule name.

Alterative Rule
The following rule for existential introduction is more in the style of logic programming rather
than functional programming and was used in Edinburgh Nuprl (called Oyster [6]).

• Exists Construction

H ` ∃x.B(x) by pair(slotd/X; slotb[slotd/X])
H ` D by slotd
H ` B(X) by slotb(X)
Note, the substitution of slotd propagates to B(X) as soon as the first subgoal determines
the value of the slot for the goal rule. The term X acts as a logic variable.

1.4 Computation Rules

Each of the rule forms when completely filled in becomes a term in an applied lambda calculus
[10, 7, 3], and there are computation rules that define how to reduce these terms in one step.
These rules are given in detail in several papers about Computational Type Theory and
Intuitionistic Type Theory, so we do not repeat them here. One of the most detailed accounts in
the book Implementing Mathematics [9, 15] and in ITT82 [16].

Some parts of the computation theory are needed here, such as the notion that all the terms used
in the rules can be reduced to head normal form. Defining that reduction requires identifying the
principal argument places in each term. Here is how they are defined. The principle argument
places are the ones identified mnemonically in the rules, thus in ap(f ; a) it is f for function, in
spread(p; x, y.g) it is p for pair, in decide(d; l.left; r.right) it is d for decision.

The reduction rules are simple. For ap(f ; a), first reduce f , if it becomes a function term, λ(x.b),
then reduce the function term to b[a/x], that is, substitute the argument a for the variable x in
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the body of the function b and continue computing. If it does not reduce to a function, then no
further reductions are possible and the computation aborts. It is possible that such a reduction
will abort or continue indefinitely. But the terms arising from proofs will always reduce to head
normal form. This fact is discussed in the references.
To reduce spread(p; x, y.g), reduce the principal argument p. If it does not reduce to pair(a; b),
then there are no further reductions, otherwise, reduce g[a/x, b/y].

To reduce decide(d; l.left; r.right), reduce the principal argument d until it becomes either inl(a)
or inr(b) or aborts or fails to terminate.5. In the first case, continue by reducing left[a/l] and in
the other case, continue by reducing right[b/r].

It is important to see that none of the first-order proof terms is recursive, and it is not possible to
hypothesize such terms without adding new computation forms. It is thus easy to see that all
evidence terms terminate on all inputs from all models. We state this below as a theorem about
valid evidence structures.

Theorem 1 Every uniform evidence term for minimal, intuitionistic, and classical logic denotes
canonical evidence, and the functional terms terminate on any inputs from any model.

Additional notations It is useful to generalize the semantic operators to n-ary versions. For
example, we will write λ terms of the form λ(x1, ..., xn.b) and a corresponding n-ary application,
f(x1, ..., xn). We allow n-ary conjunctions and n-tuples which we decompose using
spreadn(p;x1, ..., xn.b). More rarely we use n-ary disjunction and the decider,
deciden(d; case1.b1; ...; casen.bn). It is clear how to extend the computation rules and how to
define these operators in terms of the primitive ones.
It is also useful to define True to be the type ⊥⇒⊥ with element id = λ(x.x). Note that
λ(x.spread(pair(x;x);x1, x2.x1)) is computationally equivalent to id [14], as is
λ(x.decide(inr(x); l.x; r.x)).6.

1.5 Consistency of First-Order Refinement Logic

We can prove a simple consistency theorem for our refinement style axiomatization of the
first-order logics iFOL and mFOL. We show that a logical function provable in iFOL (hence in
mFOL) is uniformly valid.7 Moreover, the evidence term is purely logical in the sense that the
only terms used are the logical operators from the rules.
We do not discuss this method here, but the reader can imagine that we have access to the syntax
of the proof expression and can analyze it to say that only logical operators are used.8 For any
type T , the type T 0 is the type of all closed terms that belong to T .

Theorem 2 - Consistency: If
`1

i ∀ D : Type, m : N+, r : N+
m, F : Lm,r(D) → P, R̄ : Lm,r(D).F (R̄), then

∃ evd : (R̄
⋂

[F (R̄)])0.Pure(evd).
5The computation systems of CTT and ITT include diverging terms such as fix(λ(x.x)). We sometimes let ↑

denote such terms
6We could also use the term λ(x.decide(inr(x); l.div; r.r)) and normalization would reduce it to λ(x.x)
7We write `i to indicate intuitionistic provability and `m in to indicate mFOL provability.
8The way we say that the evidence is purely logical is to define an operator Pure which operates on the syntactic

structure of elements in the type Base, the type of all closed terms with Howe’s squiggle equality [14].
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Corollary 1: There is no first-order proof of False.
Corollary 2: There is no uniform proof of P∨ ∼ P in classical evidence semantics.

1.6 Properties of proof terms

We have noted that proof terms pf are evidence for the formulas they prove. It is also interesting
to note that for mFOL, all the subterms of pf can be typed by subformulas of F . We call such
terms fully typed. Moreover, for the propositional evidence terms, if we provide fully normalized
inputs to functional proof terms, the value can be reduced to fully canonical form, and we can
reduce the output term in any order. This is related to the strong normalization property of the
typed lambda calculus with products and sums [11].
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