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1 Introduction

These notes for CS5860 present the basic types of the core Nuprl type theory. They are
based on the article The Structure of Nuprl’s Type Theory presented in the book Logic of
Computation edited by M. Broy and H. Schwichtenberg, Springer-Verlag, 1997, pages
123-156. The full paper is available at www.nuprl.org under publications in 1997.

A naive account of Core Type Theory is especially simple, and I think it provides a bridge
to understanding the more daunting axiomatization of the Nuprl type theory which is used
in all of the on-line libraries. This article presents the Core Theory and relates it to a
corresponding part of Nuprl. Comparisons are made to set theory as a way to motivate the
concepts.

Another readable account of the core theory appears in my article Naive Computational
Type Theory in the book Proof and System Reliability, edited by H. Schwichtenberg and R.
Steinbruggen, NATO Science Press, 2002, pages 213-259.

1.1 Role of Type Theory

Type theory has emerged as the native language of the most widely used interactive
theorem provers and is the default formalism for reasoning about programming languages.
The types used in modern implemented type theories such as Agda, Coq, and Nuprl are
exerting an influence on the design of modern programming languages because the value of
rich type systems has become relevant to more programming languages and formal
methods research. Dependent types are especially important, and we discuss them here in
a separate section.

1.2 Types and Sets

The informal language of mathematics uses types and sets, a set being on kind of type.
However, when mathematicians want to be very rigorous, then tend to rely on pure set
theory. That might be changing as proof assistants have a larger impact on mathematical
research.
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The Core Theory needed for Nuprl involves only six type constructors� product� disjoint
union� function space� inductive type� set type� and quotient type� We need some primitive
types as well� void� unit� Type� and Prop� I have chosen to add co�inductive types as
well although they are not in Nuprl ��

� The Core Theory

��� Primitive Types

void is a type with no elements
unit is a type with one element� denoted �

There will be other primitive types introduced later� Notice� in set theory we usually
have only one primitive set� some in�nite set �usually ��� Sometimes the empty set�
�� is primitive as well� although it is de�nable by separation from ��

Compound Types We build new types using type constructors� These tell us how
to construct various kinds of objects� �In pure set theory� there is only one kind� sets��

The type constructors we choose are motivated both by mathematical and compu�
tational considerations� So we will see a tight relationship to the notion of type in
programming languages� The notes by C�A�R� Hoare� Notes on Data Structuring �	
��
make the point well�

��� Cartesian Products

If A and B are types� then so is their product� written A � B� There will be many
formation rules of this form� so we adopt a simple convention for stating them� We
write

A is a Type B is a Type

A�B is a Type�

The elements of a product are pairs� ha� bi� Speci�cally if a belongs to A and b belongs
to B� then ha� bi belongs to A�B� We abbreviate this by writing

a � A b � B

ha� bi � A�B�

In programming languages these types are generalized to n�ary products� say
A� �A� � � � ��A

n
� They are the basis for de�ning records�

	



We say that ha� bi � hc� di in A�B i� a � c in A and b � d in B�

In set theory� equality is uniform and built�in� but in type theory we de�ne equality
with each constructor� either built�in �as in Nurpl� or by de�nition as in this core
theory�

There is essentially only one way to decompose pairs� We say things like� �take the
�rst elements of the pair P �	 symbolically we might say �rst�P � or 
of�P �� We can
also �take the second element of P �	 second�P � or �of�P ��

��� Function Space

We use the words �function space	 as well as �function type	 for historical reasons�
If A and B are types� then A � B is the type of computable functions from A to B�
These are given by rules which are de�ned for each a in A and which produce a unique

value� We summarize by

A is a Type B is a Type

A� B is a Type

The function notation we use informally comes from mathematics texts� e�g� Bour�

baki�s Algebra� We write expressions like x �� b or x
f
�� b the latter gives a name to

the function� For example� x �� x� is the squaring function on numbers�

If b computes to an element of B when x has value a in A for each a� then we say
�x �� b� � A � B� We will also use lambda notation� ��x�b� for x �� b� The informal
rule for typing a function ��x�b� is to say that ��x�b� � A � B provided that when
x is of type A� b is of type B� We can express these typing judgments in the form
x � A � b � B� The phrase x �A declares x to be of type A� The typing rule is then

x � A � b � B

� ��x�b� � A� B

If f� g are functions� we de�ne their equality as

f � g i� f�x� � g�x� for all x in A�

If f is a function from A to B and a�A� we write f�a� for the value of the function�
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��� Disjoint Unions �also called Discriminated Unions�

Forming the union of two sets� say x � y� is a basic operation in set theory� It is basic
in type theory as well� but for computational purposes� we want to discriminate based
on which type an element is in� To accomplish this we put tags on the elements to
keep them disjoint� Here we use inl and inr as the tags�

A is a Type B is a Type

A�B is a Type

The membership rules are

a � A

inl�a� � A�B

b � B

inr�b� � A�B

We say that inl�a� � inl�a�� i� a � a� and likewise for inr�b��

We can now use a case statement to detect the tags and use expressions like

if x � inl�z� then � � � some expression in z � � �

if x � inr�z� then � � � some expression in z � � �

in de�ning other objects� The test for inl�z� or inr�z� is computable� There is an
operation called decide that discriminates on the type tags� The typing rule and
syntax for it are given in terms of a typing judgment of the form E � t � T where is a
list of declarations of the form x� � A�� � � � � xn � A

n
called a typing environment� The

Ai are types and xi are variables declared to be of type Ai� The rule is

E � d � A�B E� u � A � t� � T E� v � B � t� � T

E � decide�d	u�t�	 v�t�� � T

��� Subtyping

Intuitively�A is a subtype of B i� every element of A is also an element of B	 we write
this relation as A � B� Clearly � � A for any A� Notice that A is not a subtype of
A�B since the elements of A in A�B have the form inl�a�� We have these properties
however

A � A� B � B�

A�B � A� �B�

A�B � A� �B�

A� � B � A� B�

For A � B we also require that a � a� in A implies a � a� in B�






In order to use the elements of a co�inductive type� we need some way to force the
generator to produce an element� This is done with a form called out� It has this
property�

If t � �X�F �X�
then out�t��F ��X�F �X���

This form obeys the following computation rule�

out���ind�d� f� z�b��
evaluates to b�d�z� �y �� ��ind�y� f� z�b��f ��

��� Subset Types and Logic

One of the most basic and characteristic types of Nuprl is the so�called set type or
subset type� written fx �A jP �x�g and denoting the subtype of A consisting of exactly
those elements satisfying condition P � This concept is closely related to the set theory
notion written the same way and denoting the 	subset
 of A satisfying the predicate
P � In axiomatic set theory the existence of this set is guaranteed by the separation

axiom� The idea is that the predicate P separates a subset of A as in the example of
say the prime numbers� fx �N j prime�x�g�

To understand this type� we need to know something about predicates� In axiomatic
set theory the predicates allowed are quite restrictive� they are built from the atomic
membership predicate� x � y using the �rst order predicate calculus over the universe
of sets� In type theory we allow a di�erent class of predicates  those involving
predicative higher�order logic in a sense� This topic is discussed in many articles and
books on type theory ���� ��� ��� ��� ��� ��� and is beyond the scope of this article� so
here we will just assume that the reader is familiar with one account of propositions�
as�types or representing logic in type theory�

The Nuprl style is to use the type of propositions� denoted Prop� This concept is
strati�ed into Propi as in Principia Mathematica� and it is related by the propositions�
as�types principle to the large types such as Type� Propi are indeed considered to be
a 	large types�
 �See ���� for an extensive discussion of this notion�� For the work we
do here we only need the notions of Type and Prop which we take to be Type� and
Prop� in the full Nuprl theory�
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The point of universes or large types is that they allow us to use expressions like
Type� A � Type� A � Type� Type � Type� etc� as if they were types except that
Type � Type is not allowed� Instead� when we need such a notion we must attend
to the level numbers used to stratify the notions of Type and Prop� We can say
Typei � Typej if i � j� and Typei � Typej when i � j�

Thus the objects of mathematics we consider include propositions� For example�
� � � in N and � � � are true propositions about the type N � so � � � � Prop and
� � � � Prop� We also consider propositional forms such as x �N y or x � y� These
are sometimes called predicates�

Propositional functions on a type A are elements of the type A� Prop�

We also need types that can be restricted by predicates such as fx � N jx � � or
x � �g� This type behaves like the Booleans�

The general formation rule is this� If A is a type and B � A� Prop� then fx � AjB�x�g
is a subtype of A�

The elements of fx � AjB�x�g are those a in A for which B�a� is true�

Sometimes we state the formation in terms of predicates� so if P is a proposition for
any x in A� then fx � AjPg is a subtype of A� We Clearly have fx � AjPg � A�

��� Dependent types and modules

We will be able to de�ne modules and abstract data types by extending the existing
types in a simple but very expressive way 	 using so
called dependent types�

dependent product

Suppose you are writing a business application and you wish to construct a type
representing the date�

Month � f�� � � � � ��g

Day � f�� � � � � ��g

Date � Month �Day

We would need a way to check for valid dates� Currently� h�� ��i is a perfectly legal
member of Date� although it is not a valid date� One thing we can do is to de�ne

Day��� � f�� � � � � ��g

Day��� � f�� � � � � �g
���

Day���� � f�� � � � � ��g
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and we will now write our data type as

Date � m � Month�Day�m��

We mean by this that the second element of the pair belongs to the type indexed by
the �rst element� Now� h�� ��i is a legal date since �� � Day���� and h�� 	
i is illegal
because 	
 �� Day����

Many programming languages implement this or a similar concept in a limited way�
An example is Pascal�s variant records� While Pascal requires the indexing element to
be of scalar type� we will allow it to be of any type�

We can see that what we are doing is making a more general product type� It is very
similar to A�B� Let us call this type prod�A�x�B�� We can display this as x � A�B�
The typing rules are�

E � a � A E � b � B�a�x
E � pair�a� b� � prod�A�x�B�

E � p � prod�A�x�B� E� u � A� v � B�u�x � t � T

E � spread�p�u� v�t� � T

Note that we haven�t added any elements� We�ve just added some new typing rules�

dependent functions

If we allow B to be a family in the type A � B� we get a new type� denoted by
fun�A�x�B�� or x �A� B� which generalizes the type A� B� The rules are�

E� y �A � b�y�x � B�y�x

E � ��x�b� � fun�A�x�B�
new y

E � f � fun�A�x�B� E � a � A

E � ap�f � a� � B�a�x

Example � � Back to our example Dates� We see that m �Month � Day�m is just
fun�Month�m�Day�� where Day is a family of twelve types� And ��x�maxday�x� is
a term in it�

� Equality and Quotient Types

According to Martin�L�of�s semantics� a mathematical type is created by specifying
notation for its elements� called canonical names� and specifying our equality relation
on these names� The equality relation can be an equivalence relation� This relation is
one feature that distinguishes mere notation from the more abstract idea of an object�
i�e� from notation with meaning�
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For example� sets of ordered pairs of integers� hx� yi can be used as constants for ratio�
nal numbers� In this case� the equality relation should equate h�� �i and h�� �i� generally
ha� bi � hc� di i� a � d � b � c� Similarly� let Z�mod n denote the congruence integers�
i�e� the integers with equality taken mod n so that x � y mod n i� n divides �x� y	�
The only di�erence between Zand Z�mod n is the equality relation on the integer
constants�

Following Beeson 
�� we might speak of the constants without an equality relation as a
pre�type� Then a type arises by pairing an equality with a pre�type� say hT�Ei where
E is an equivalence relation on T � But when we think of functions on a type� say
f  Q� Q� we do not expect equality information to be included as part of the input
to f � The �data� comes from T � This viewpoint is thus similar to Martin�L�of�s as
long as we provide a way to de�ne new types by changing the equality relation on data
and keeping the equality information �hidden� from operations on the type� This is
accomplished by the quotient type�

To form a quotient type we need a type T and an equivalence relation E on T � The
quotient of T by E is denoted T��E� �Nuprl uses a slightly more �exible notation as
we see in section ��	 The elements of T��E are those of T but equality is de�ned by
E and denoted x � y in T��E� For example the rational numbers can be taken to be
�Z� N�	��E where

E�hx� ni� hy�mi	 i� m � x � n � y�

It is noteworthy that because the equality information is �hidden� we cannot in general
say

x � y in T��E implies E�x� y	

under the propositions�as�types interpretation of implication�

Type theory can express the logical idea that given x � y in T��E we know that
E�x� y	 is �true� in the sense that there is a proof of E�x� y	 but we cannot access it�
One way to say this is to replace the predicate E�x� y	 by the weaker type f�jE�x� y	g�
We call this the �squashed type�� If E�x� y	 is true then this type� call it sq�E�x� y		
has � as member according to our rules for the set type� If E�x� y	 is not true� then
sq�E�x� y		 is empty� We can thus say

x � y in T��E implies sq�E�x� y		�

� A Nuprl Type Theory

In this section we look at some features of the Nuprl type theory� The �rst section
is a discussion of the uniform syntax of Nuprl � terms� The second section considers
Allen�s semantics 
�� �� for Nuprl without recursive types� Mendler 
��� provides a
semantics for recursive types as well� but it is more involved than what we present
here�
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��� Nuprl Term Syntax

Following Frege� Church� and Martin�L�of� we take the basic unit of notation to be a
term� A formula for a sentence� �x � int� x� � �� is a term as is the expression for the
square of a number� x��

We will distinguish the concrete syntax or the display form of a term from its abstract
structure�

����� abstract structure of terms

What are the constituent parts of a term�

operator name

In our analysis a term is built from an operator and subterms� We choose to name
the operator� so there is some means of �nding an operator name� This seems to be
convenient for computer processing and helps in the conduct of mathematics as well�
Informal practice sometimes settles for a glyph or symbol as the operator name� e�g�
R
�

subterms

Given a term� there must be a �nite number of subterms� These could be collected as a
list or a multi�set �bag	� In many cases� say a

b
� it is not clear how to order the subterms

a and b� But there must be a way to address �or locate	 uniquely each subterm� We
have chosen to list the subterms�

binding structure

We know that mathematical notation for sentences can be de�ned with combinators

which do not introduce an idea of binding�

We adopt the analysis of notation based on binding� So with each operator there is a
binding mechanism� Informal mathematics uses many di
erent mechanisms� but we
will attempt to analyze all of them as �rst�order� That is� the binding structure can
be de�ned by designating a class of �rst order variables� i�e� just identi�ers� as binding
occurrences� The generic form of an operator with binding structure is

opx������xn�t�� � � � � tm	

where xi are �rst order variables and tj are terms� The binding structure is speci�ed
by saying which of the xi is bound in which tj� This could be done graphically as in

opx�y�z�ax�y� by�z� cx�z	

In Nuprl we have chosen to use the form

op�x� y� ax�y� y� z� by�z�x� z� cx�z	�

because it is a simple way to represent the general binding structure described above�
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