Preferences for Intertemporal Choice

Larry Blume

Cornell University \& The Santa Fe Institute \& IHS

Spring 2014

Examples of Choice Problems

- Should I get a job after graduation and start making money now, or get a graduate degree and make more money starting two years from now?
- How much should I save out of each paycheck?
- I want to buy a house. How big a loan should I take?
- Food to cook this week: cheese, fish, pasta, steak, veggies. In which order should I eat them.
- The elevator problem.

Formalism

X_{t} Objects available at date t. $X=X_{0} \times X_{1} \times \cdots$, set of bundles.
\succ Preference relation on X.

Discounting

The "standard" preference order are those of the form

$$
U\left(x_{1}, \ldots, x_{T}\right)=u_{0}\left(x_{1}\right)+u_{1}\left(x_{1}\right)+\cdots+u_{T}\left(x_{T}\right)
$$

Such preferences are called additively separable.

Special case: stationary utility with a constant discount factor

$$
\begin{gathered}
u_{t}\left(x_{t}\right)=\beta^{t} u\left(x_{t}\right), \quad \beta>0 \\
u\left(x_{1}, \ldots, x_{T}\right)=u\left(x_{0}\right)+\beta u\left(x_{1}\right)+\beta^{2} u\left(x_{2}\right)+\cdots+\beta^{T} u\left(x_{T}\right)
\end{gathered}
$$

Separable Preferences

Let $M \subset\{1, \ldots, T\}$ be a set of dates; $x=\left(x_{M,}, x_{\sim M}\right)$.

Definition: Preferences are separable on M iff for all x_{M}, $y_{M}, x_{\sim M}, y_{\sim M},\left(x_{M}, x_{\sim M}\right) \succ\left(y_{M}, x_{\sim M}\right)$ if and only if $\left(x_{M}, y_{\sim M}\right) \succ\left(y_{M}, y_{\sim M}\right)$.

Theorem: Suppose that preferences on X are represented by a utility function U. Then preferences are separable on M if and only if there is a utility functional $u: X_{M}$ $\rightarrow \mathbf{R}$ and an aggregator $U^{*}: \mathbf{R} \times X_{\sim M} \rightarrow \mathbf{R}$ increasing in its first argument such that $U(x)=U^{*}\left(U\left(x_{M}\right), x_{\sim}\right)$.

Proof

If U has this form, then $\left(x_{M}, x_{\sim M}\right) \succ\left(y_{M}, x_{\sim M}\right)$ iff $U^{*}\left(U\left(x_{M}\right), x_{\sim M}\right)>U^{*}\left(U\left(y_{M}\right), x_{\sim M}\right)$. Since U^{*} is increasing in its first argument, $\left.u\left(x_{M}\right)>u_{(} y_{M}\right)$. Thus for any other $y_{\sim M}, U^{*}\left(u\left(x_{M}\right), y_{\sim M}\right)>U^{*}\left(u\left(y_{M}\right), y_{\sim M}\right)$ and so $\left(x_{M}, y_{\sim M}\right) \succ\left(y_{M}, y_{\sim M}\right)$.

Proof

If preferences are separable on M, pick $x_{\sim M^{\prime}}^{\prime}$, and let $u\left(x_{M}\right)=U\left(x_{M}, x_{{ }_{\sim}^{M}}^{\prime}\right)$. Define U^{*} such that $U^{*}\left(U\left(x_{M}\right), x_{\sim M}\right)$ $=U\left(x_{M}, x_{\sim M}\right) . U^{*}$ will be well- defined iff there are no $x_{M}, x_{\sim M}, y_{M}$ such that $u\left(x_{M}\right)=u\left(y_{M}\right)$ but $U\left(x_{M}, x_{\sim M}\right) \neq$ $U\left(y_{M}, x_{\sim M}\right)$. But we have $U\left(x_{M}, x_{\sim M}^{\prime}\right)=U\left(y_{M}, x_{\sim M}^{\prime}\right)$, so separability implies that this holds for all $x_{\sim M}$.

If $u\left(x_{M}\right)>u\left(y_{M}\right)$ then
$U^{*}\left(u\left(x_{M}\right), x_{\sim M}^{\prime}\right)=U\left(x_{M}, x_{\sim M}^{\prime}\right)>U\left(y_{M}, x_{\sim M}^{\prime}\right)=U^{*}\left(U\left(y_{M}\right), x_{\sim M}^{\prime}\right)$,
so separability implies that for all $x_{\sim M}$,
$U^{*}\left(U\left(x_{M}\right), x_{\sim M}\right)=U\left(x_{M}, x_{\sim M}\right)>U\left(y_{M}, x_{\sim M}\right)=U^{*}\left(U_{\left(y_{M}\right)}, x_{\sim M}\right)$.
So U^{*} is increasing in its first argument.

The Definition Chains

Suppose that M and N are disjoint subsets of $\{1, \ldots, T\}$. Suppose that preferences are separable over both M and N. Then the utility function has the form $U^{*}\left(u_{M}\left(x_{M}\right), u_{N}\left(x_{N}\right), x_{\sim M U N}\right)$.

In fact, for disjoint M_{1}, M_{2}, \ldots This can be shown by induction.

Separability and Indifference Curves

Suppose each $x_{k}=\mathbf{R}_{+}$for $k=1,2,3$, and fix x_{1}^{\prime}, and x_{2}^{\prime}. The slope of the indifference curve in $X_{1} \times X_{2}$ is independent of X_{2}. For $i=1,2$,

$$
\frac{\partial U\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}\right)}{\partial x_{i}}=U_{1}^{*}\left(u\left(x_{1}^{\prime}, x_{2}^{\prime}\right), x_{3}\right) \frac{\partial u}{\partial x_{i}^{\prime}}
$$

and so

$$
\frac{\partial U\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}\right) / \partial x_{1}}{\partial U\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}\right) / \partial x_{2}}=\frac{\partial u\left(x_{1}^{\prime}, x_{2}^{\prime}\right) / \partial x_{1}}{\partial u\left(x_{1}^{\prime}, x_{2}^{\prime}\right) / \partial x_{2}}
$$

Separability and Optimization

$$
\begin{array}{ll}
\max & U^{*}\left(u\left(x_{M}\right), x_{\sim M}\right) \\
\text { s.t. } & p \cdot x_{M}+q \cdot x_{\sim M} \leq w \\
& x_{M} \geq 0, x_{\sim M} \geq 0
\end{array}
$$

If the DM spends w_{M} on the goods in M and $W_{\sim M}=W-W_{M}$ on $X_{\sim M}$,

1. How should he allocate w_{M} in M ?

$$
\begin{aligned}
v\left(p, w_{M}\right) & =\max _{x_{M}} u\left(x_{M}\right) \\
\text { s.t. } \quad p \cdot x_{M} & \leq w_{M}, \quad x_{M} \geq 0
\end{aligned}
$$

2. How should he choose w_{M} and $x_{\sim M}$?

$$
\begin{array}{ll}
& \max _{w_{M}, x_{\sim M}} U^{*}\left(v\left(p, w_{M}\right), x_{\sim M}\right) \\
\text { s.t. } & w_{M}+q \cdot x_{\sim M} \leq w, \quad w_{M}, x_{\sim M} \geq 0
\end{array}
$$

Additive Separability

When is the aggregator + ?

Definition: A factor t is essential if there exists quantities x_{t}, y_{t} and $x_{\sim}\{t\}$ such that $\left(x_{t}, x_{\sim}\{t\}\right) \succ\left(y_{t}, x_{\sim}\{t\}\right)$.

Theorem: Suppose \succ has a continuous utility representation on X and that there are at least three essential factors. Then \succ has an additively separable representation iff each $\{t\}$ is separable.

If $\sum_{t} u_{t}\left(x_{t}\right)$ and $\sum_{t} v_{t}\left(x_{t}\right)$ both represent \succ, then there is an $a>0$ and b_{t} such that $v_{t}(x)=a u_{t}(x)+b_{t}$.

Separability and Expected Utility

Suppose $\mathcal{S}=\{1,2,3\}$, and $\mathcal{O}=\{a, b, c, d\}$. Consider two acts,

$$
\begin{aligned}
f(s)= \begin{cases}a & \text { if } s=1, \\
b & \text { if } s=2, \\
c & \text { if } s=3,\end{cases} & g(s)= \begin{cases}b & \text { if } s=1, \\
a & \text { if } s=2, \\
c & \text { if } s=3 .\end{cases} \\
f^{\prime}(s)= \begin{cases}a & \text { if } s=1, \\
b & \text { if } s=2, \\
d & \text { if } s=3,\end{cases} & g^{\prime}(s)= \begin{cases}b & \text { if } s=1, \\
a & \text { if } s=2, \\
d & \text { if } s=3 .\end{cases}
\end{aligned}
$$

Suppose p is a probability distribution on \mathcal{S} and $u: \mathcal{O} \rightarrow \mathbf{R}$ is a payoff function.

$$
\begin{aligned}
E_{p} u \circ f-E_{p} u \circ g & =p(1)\left(u\left(o_{1}\right)-u\left(o_{2}\right)\right)+p(2)\left(u\left(o_{2}\right)-u\left(o_{1}\right)\right) \\
& =E_{p} u \circ f^{\prime}-E_{p} u \circ g^{\prime}
\end{aligned}
$$

so $f \succ g$ iff $f^{\prime} \succ g^{\prime}$, and EU preferences are separable.

Suppose \mathcal{P} is the set of probabilities such that $p(2)=p$ for a fixed $0<p<1 / 2$. Suppose $u(b)=0$ and
$u(d)>u(a)>0>u(c)$.

$$
\min _{p \in \mathcal{P}} E_{p} u \circ f=(1-p) u(c) \quad \min _{p \in \mathcal{P}} E_{p} u \circ g=(1-p) u(c)
$$

so $f \sim g$, and

$$
\min _{p \in \mathcal{P}} E_{p} u \circ f^{\prime}=(1-p) u(a) \quad \min _{p \in \mathcal{P}} E_{p} u \circ g^{\prime}=p u(a)
$$

so $f^{\prime} \succ g^{\prime}$.

Thus MMEU preferences are not separable.

Stationarity

Theorem: Suppose that $X_{t}=X_{s}$ for all s and t. Suppose that \succ has an additively separable representation and for all $\left(x_{1}, \ldots, x_{T}\right)$ and $y_{1},\left(x_{1}, \ldots, x_{T}\right) \succ\left(y_{1}, x_{2}, \ldots, x_{T}\right)$ iff $\left(x_{2}, \ldots, x_{T}, x_{1}\right) \succ\left(x_{2}, \ldots, x_{T}, y_{1}\right)$. Then we can take

$$
u_{1}=\cdots=u_{T} .
$$

Dynamic Programming I

Suppose preferences are additively separable and consider the problem

$$
\begin{array}{ll}
& \max _{x} \sum_{t} u_{t}\left(x_{t}\right) \\
\text { s.t. } & p \cdot x \leq w, \quad x \geq 0 .
\end{array}
$$

Solve the last period problem first, assuming the DM has wealth w_{T}.

$$
\begin{aligned}
v_{T}\left(p_{T}, w_{T}\right) & =\max _{x_{T}} u_{T}\left(x_{T}\right) \\
\text { s.t. } \quad p_{T} \cdot x_{T} & \leq w_{T}, \quad x_{T} \geq 0 .
\end{aligned}
$$

Now solve

$$
v_{T-1}\left(p_{T-1}, w_{T-1}\right)=\max _{x_{T-1}} u_{T-1}\left(x_{T-1}\right)+v_{T}\left(p_{T}, w_{T}\right)
$$

s.t. $\quad p_{T-1} \cdot x_{T-1} \leq w_{T-1}, \quad w_{T}=w_{T-1}-p_{T-1} x_{T-1}, \quad x_{T-1} \geq 0$.

And so forth.

Dynamic Programming II

This method is called backward induction.

$$
v_{T-1}\left(p_{T-1}, w_{T-1}\right)=\max _{x_{T-1}} u_{T-1}\left(x_{T-1}\right)+v_{T}\left(p_{T}, w_{T}\right)
$$

s.t. $\quad p_{T-1} \cdot x_{T-1} \leq W_{T-1}, \quad W_{T}=W_{T-1}-p_{T-1} x_{T-1}, \quad x_{T-1} \geq 0$.
v_{T} and v_{T-1} are the date T and date $T-1$ value function.
w_{T} and w_{T-1} are the date T and date $T-1$ state variables.
$w_{T}=w_{T-1}-p_{T-1} X_{T-1}$ is the equation of evolution or state equation.

Stationary Infinite Horizon Problems

Suppose the problem is stationary: $U(x)=\sum_{t=0}^{\infty} \beta^{t} u\left(x_{t}\right)$. Suppose $p_{t}=\delta^{t} p$ for $0<\delta<1$.
The "successor budget constraint" is

$$
\delta^{t} p x_{t}+\delta^{t+1} p x_{t+1}+\cdots \leq w_{t} .
$$

Define $\tilde{w}_{t}=\delta^{-t} w_{t}$. Then

$$
p x_{t}+\delta p x_{t+1}+\cdots \leq \tilde{w}_{t} .
$$

Define \tilde{w}_{t} as the state variable. The state evolution equation becomes

$$
p x_{t}+\delta \tilde{w}_{t+1}=\tilde{w}_{t} .
$$

The problem posed this way is stationary.

The Bellman Equation

$$
\begin{array}{cc}
& v\left(\tilde{w}_{t}\right)=\max _{x} u(x)+\beta v\left(\tilde{w}_{t+1}\right) \\
\text { s.t. } & p_{t} x_{t}+\delta \tilde{w}_{t+1} \leq \tilde{w}_{t}, \quad x_{t} \geq 0, \tilde{w}_{t+1} \geq 0
\end{array}
$$

Define the Bellman operator

$$
\begin{array}{ll}
& T v(w)=\max _{x} u(x)+\beta v\left(\tilde{w}_{t+1}\right) \\
\text { s.t. } & p_{t} x_{t}+\delta w^{\prime} \leq w, \quad x_{t} \geq 0, w^{\prime} \geq 0 .
\end{array}
$$

Fact: For any v, the sequence $v, T v, T^{2} v, T^{3} v, \ldots$ converges to the value function.

TIme Consistency

Suppose discounting is not necessarily geometric. Instead, the future k periods ahead is discounted at rate $d(k)$, so

$$
U\left(x_{1}, \ldots\right)=\sum_{k=1}^{\infty} d(k) u\left(x_{k}\right) .
$$

where $d(1)=1 /\left(1+\delta_{1}\right)$, and define inductively $d(k)=d(k-1) \cdot 1 /\left(1+\delta_{k}\right)$.

TIme Consistency

If $\delta_{k} \equiv \delta$ then if $x+y$ tomorrow is preferred to x today, then $x+y$ is preferred in period $t+k+1$ to x in period $t+k$.

If $\left(c_{t}, c_{t+1}, \ldots\right)$ is preferred to $\left(c_{t^{\prime}}^{\prime}, c_{t+1}^{\prime}, \ldots\right)$ and $c_{t}=c_{t^{\prime}}^{\prime}$ then $\left(c_{t+1}, \ldots\right)$ is preferred to $\left(c_{t^{\prime}}^{\prime} c_{t+1}^{\prime} \ldots\right)$. The data is unclear on whether or not this happens in practice.

Hyperbolic discounting. If x at period t is preferred to $x+y$ at period $t+k$, then for all $h>0, x$ at period $t+h$ is preferred to $x+y$ at period $t+k+h$.

