Static Decision Theory Under Certainty

Larry Blume

September 7, 2010
A set of objects X

An individual is asked to express preferences among the objects, or to make choices from subsets of X.

For $x, y \in X$ we can ask which, if either, is strictly preferred, that is, the best of the two.

If the subject says, “I prefer x to y,” then we write $x \succ y$ and say, “x is strictly preferred to y.”

The relation \succ is a binary relation.

Example 1: Let $X = \{a, b, c\}$, $b \succ a$, $a \succ c$, and $b \succ c$. What if the subject also says $a \succ b$?
Axioms – properties that (arguably) all preference orders should satisfy.

Asymmetry: For all $x, y \in X$, if $x \succ y$ then $y \prec x$.

Negative Transitivity: For all $x, y, z \in X$, if $x \not\succ y$ and $y \not\succ z$ then $x \not\succ z$.

Proposition: The binary relation \succ is negatively transitive iff $x \succ z$ implies that for all y, $y \succ z$ or $x \succ y$.
Example 2: $X = \{a, b, c\}$, $b > a$, $a > c$ and $b \not> c$. Asymmetry and NT you also know how b and c must be ranked.

Definition: A binary relation $>$ is called a (strict) preference relation if it is asymmetric and negatively transitive.

Is asymmetry a good normative or descriptive property? What about negative transitivity.
Definition: For $x, y \in X$,

- $x > y$ iff $y \not\geq x$;
- $x \sim y$ iff $y \not\succ x$ and $x \not\prec y$.

Does the absence of strict preference in either direction require real indifference or could it permit non-comparability?

Example: $X = \{a, b, c\}$. Suppose a is not ranked (by $>$) relative to either b or c. If $>$ satisfies NT, then b and c are not ranked either.
Definition: The binary relation \succeq on X is complete if for all $x, y \in X$, $x \succeq y$ or $y \succeq x$. \succeq is transitive iff for all $x, y, z \in X$, $x \succeq y$ and $y \succeq z$ implies $x \succeq z$.

Proposition: Let $>$ be a binary relation on X.
- $>$ is asymmetric iff \succeq is complete.
- $>$ is negatively transitive iff \succeq is transitive.
Proof: \implies

- Asymmetry implies that for no pair $x, y \in X$ is it true that both $x \succ y$ and $y \succ x$. Thus at least one of $x \nless y$ and $y \nless x$ must hold. So at least one of $x \preceq y$ and $y \preceq x$ is true. That is, \preceq is complete.

- If $x \nless y$ and $y \nless z$, then $x \nless z$. By definition we have $y \succeq x$ and $z \succeq y$ implies $z \succeq x$, so \succeq is transitive.

\Longleftarrow will be on homework 1.
Proposition: If \succ is a preference relation, then \succ is transitive.

Is transitive a useful property?

- Normative property?
- The coffee cup example.
- Without transitivity, there may be no preference maximal object in a set of alternatives.
Suppose that X is finite. Let $P^+(X)$ denote the set of all non-empty subsets of X.

Definition: A choice function is a function $c : P^+(X) \rightarrow P^+(X)$ such that for all $A \in P^+(X)$, $c(A) \subseteq A$.

$c(A)$ is the set of objects “chosen” from A.

Preference relations define choice functions.

Definition: For a preference relation $>$ on X, its choice function $c_\succ : P^+(X) \rightarrow P^+(X)$ is

$$c_\succ(A) = \{x \in A : \text{ for all } y \in A, y \not\succ x\}.$$
Things to think about:

- Show that if $x, y \in c_>(A)$, then $x \sim y$.
- Show that for all $A \in P^+(X)$, $c_>(A) \neq \emptyset$.

The second item justifies the use of the phrase choice function to describe $c_>$.
For every choice function c is there a preference order \succ such that $c = c_\succ$?

Clearly not:

Example: $X = \{a, b, c\}$.

- $c(\{a, b, c\}) = \{a\}$ and $c(\{a, b\}) = \{b\}$ violates asymmetry.
- $c(\{a, b\}) = \{a\}$ and $c(\{b, c\}) = \{b\}$ and $c(\{a, c\} = \{c\}$ violates negative transitivity.
Axiom α: If $x \in B \subset A$ and $x \in C(A)$, then $x \in C(B)$.

Proposition: If \succ is a preference relation, then c_\succ satisfies axiom α.

Proof: Suppose there are sets $A, B \in P^+(X)$ satisfying the hypotheses, that $x \in c_\succ(A)$ and $x \notin c_\succ(B)$, Then there is a $y \in B$ such that $y \succ x$. Since $B \subset A$, $y \in A$ and so $x \notin c_\succ(A)$, contrary to our hypothesis.
Axiom β: If \(x, y \in c(A) \), \(A \subset B \) and \(y \in c(B) \), then \(x \in c(B) \).

Proposition: If \(\succ \) is a preference relation, then \(c_\succ \) satisfies axiom \(\beta \).

Proof: Since \(\in c_\succ(A) \) and \(y \in A \), \(y \not\succ x \). Since \(y \in c_\succ(B) \), for all \(z \in B \), \(z \not\succ y \). Negative transitivity implies that for all \(z \in B \), \(z \not\succ x \). Thus \(x \in c_\succ(B) \).
Axioms α and β characterize preference-based choice.

Proposition: If a choice function c satisfies axioms α and β, then there is a preference relation \succ such that $c = c_{\succ}$.

Proof: Two steps

- Define a “revealed preference order” \succ and show that it is a preference relation, i.e. asymmetric and negatively transitive.
- Show that $c = c_{\succ}$.
Define a preference order: $x > y$ iff $x \neq y$ and $c(\{x, y\}) = \{x\}$. Notice that, by definition, $x \not> x$.

- $>$ is asymmetric.

Suppose not. Suppose $x > y$ and $y > x$. Then $c(\{x, y\}) = \{x\}$ and $c(\{x, y\}) = \{y\}$. But both cannot be true.

- $>$ is negatively transitive.

Suppose that for some $x, y, z \in X$, $z \not> y$ and $y \not> x$. Show that $z \not> x$. That is, show that $x \in c(\{x, z\})$. It suffices to show $x \in c(\{x, y, z\})$, because then $x \in c(\{x, z\})$ follows from α.

Suppose that $x \notin c(\{x, y, z\})$. Then one or both of y and z are in $c(\{x, y, z\})$ because $c(\{x, y, z\}) \neq \emptyset$. We will show that neither of them can be in.
static decision theory proof

- \(y \notin c(\{x, y, z\}) \).

 Suppose \(y \in c(\{x, y, z\}) \). Axiom \(\alpha \) implies \(y \in c(\{x, y\}) \). Since \(y \not\succ x \), \(x \in c(\{x, y\}) \). Axiom \(\beta \) implies \(x \in c(\{x, y, z\}) \).

- \(z \notin c(\{x, y, z\}) \).

 Suppose \(z \in c(\{x, y, z\}) \). Axiom \(\alpha \) implies \(z \in c(\{y, z\}) \). \(z \not\succ y \) implies \(y \in c(\{y, z\}) \). Axiom \(\beta \) implies \(y \in c(\{x, y, z\}) \).
“Revealed preferred to” \succ is a preference relation. Now we have to show that for all $A \in P^+(A)$, $c(A) = c_>(A)$.

- Suppose $x \in c(A)$.

 α implies $x \in c(\{x, y\})$ for all $y \in A$. By definition, for all $y \in A$, $y \not\succ x$. Thus $x \in c_>(A)$.

- Suppose $x \in c_>(A)$.

 Then for all $y \in A$, $y \not\succ x$, and so $x \in c(\{x, y\})$. Choose $z \in C(A)$. If $z \neq x$, axiom α implies $z \in c(\{x, z\})$, so $c(\{x, z\}) = \{x, z\}$. Axiom β now implies $x \in C(A)$.

QED
An alternative characterization of preference-based choice functions:

Weak Axiom of Revealed Preference: If \(x, y \in A \cap B \) and \(x \in c(A) \) and \(y \in c(B) \), then \(x \in c(B) \) and \(y \in c(A) \).

This axiom is called **Houthakker’s Axiom**, or **WARP**.

Proposition: \(c \) satisfies axioms \(\alpha \) and \(\beta \) iff it satisfies WARP.

Proof: ?
We have already dissed completeness of \succeq.

Definition: $>$ is a partial order iff it is asymmetric and transitive.

Problem: Characterize $c_>$ for partial orders.

Axiom α still holds, but β may feel. See homework 1.

Now we do not want to define indifference as before, since the usual definition expresses both indifference and non-comparability. One could define the pair $(>\,\sim)$ and theorize about the pair.