Static Decision Theory Under Certainty

Larry Blume

September 7, 2010

- A set of objects X
- An individual is asked to express preferences among the objects, or to make choices from subsets of X.
- For x, y ∈ X we can ask which, if either, is strictly preferred, that is, the best of the two.
- If the subject says, "I prefer x to y," then we write x > y and say, "x is strictly preferred to y."
- ► The relation > is a binary relation.

Example 1: $X = \{a, b, c\}, b > a, a > c$, and b > c. What if the subject also says a > b?

axioms

Axioms – properties that (arguably) all preference orders should satisfy.

Asymmetry: For all $x, y \in X$, if x > y then $y \neq x$. Negative Transitivity: For all $x, y, z \in X$, if $x \neq y$ and $y \neq z$ then $x \neq z$.

Proposition: The binary relation > is negatively transitive iff x > z implies that for all y, y > z or x > y.

axioms

Example 2: $X = \{a, b, c\}, b > a, a > c$ and b? c. Asymmetry and NT you also know how b and c must be ranked.

Definition: A binary relation > is called a (strict) preference relation if it is asymmetric and negatively transitive.

Is asymmetry a good normative or descriptive property? What about negative transitivity.

Definition: For $x, y \in X$,

- x > y iff $y \not\geq x$;
- $x \sim y$ iff $y \not\sim x$ and $x \not\geq y$.

Does the absence of strict preference in either direction require real indifference or could it permit non-comparability?

Example: $X = \{a, b, c\}$. Suppose *a* is not ranked (by >) relative to either *b* or *c*. If > satisfies NT, then *b* and *c* are not ranked either.

Definition: The binary relation \geq on X is complete if for all $x, y \in X$, $x \geq y$ or $y \geq x$. \geq is transitive iff for all $x, y, z \in X$, $x \geq y$ and $y \geq z$ implies $x \geq z$.

Proposition: Let > be a binary relation on *X*.

- ► > is asymmetric iff \geq is complete.
- ► > is negatively transitive iff \geq is transitive.

$\mathsf{Proof:} \Longrightarrow$

- Asymmetry implies that for no pair x, y ∈ X is it true that both x > y and y > x. Thus at least one of x ≠ y and y ≠ x must hold. So at least one of x ≥ y and y ≥ x is true. That is, ≥ is complete.
- If x ≯ y and y ≯ z, then x ≯ z. By definition we have y ≥ x and z ≥ y implies z ≥ x, so ≥ is transitive.
- \Leftarrow will be on homework 1.

Proposition: If > is a preference relation, then > is transitive.

Is transitive a useful property?

- Normative property?
- The coffee cup example.
- Without transitivity, there may be no preference maximal object in a set of alternatives.

choice

Suppose that X is finite. Let $P^+(X)$ denote the set of all non-empty subsets of X.

Definition: A choice function is a function $c : P^+(X) \to P^+(X)$ such that for all $A \in P^+(X)$, $c(A) \subseteq A$.

c(A) is the set of objects "chosen" from A.

Preference relations define choice functions.

Definition: For a preference relation > on *X*, its choice function $c_> : P^+(X) \to P^+(X)$ is

 $c_{\succ}(A) = \{x \in A : \text{ for all } y \in A, y \neq x\}.$

choice

Things to think about:

- Show that if $x, y \in c_>(A)$, then $x \sim y$.
- Show that for all $A \in P^+(X)$, $c_>(A) \neq \emptyset$.

The second item justifies the use of the phrase choice function to describe $c_>$.

choice

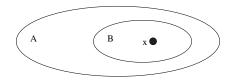
For every choice function *c* is there a preference order > such that $c = c_>$?

Clearly not:

Example: $X = \{a, b, c\}$.

- $c(\{a, b, c\}) = \{a\}$ and $c(\{a, b\}) = \{b\}$ violates asymmetry.
- c({a, b}) = {a} and c({b, c}) = {b} and c({a, c} = {c} violates negative transitivity.

choice axioms

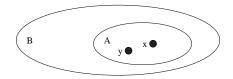


Axiom α : If $x \in B \subset A$ and $x \in C(A)$, then $x \in C(B)$.

Proposition: If > is a preference relation, then $c_>$ satisfies axiom α .

Proof: Suppose there are sets $A, B \in P^+(X)$ satisfying the hypotheses, that $x \in c_>(A)$ and $x \notin c_>(B)$, Then there is a $y \in B$ such that y > x. Since $B \subset A$, $y \in A$ and so $x \notin c_>(A)$, contrary to our hypothesis.

choice axioms



Axiom β : If $x, y \in c(A)$, $A \subset B$ and $y \in c(B)$, then $x \in c(B)$.

Proposition: If > is a preference relation, then $c_>$ satisfies axiom β .

Proof: Since $\in c_{>}(A)$ and $y \in A$, $y \neq x$. Since $y \in c_{>}(B)$, for all $z \in B$, $z \neq y$. Negative transitivity implies that for all $z \in B$, $z \neq x$. Thus $x \in c_{>}(B)$.

Axioms α and β characterize preference-based choice.

Proposition: If a choice function *c* satisfies axioms α and β , then there is a preference relation > such that $c = c_>$.

Proof: Two steps

- Define a "revealed preference order" > and show that it is a preference relation, i.e. asymmetric and negatively transitive.
- Show that $c = c_>$.

proof

Define a preference order: x > y iff $x \neq y$ and $c(\{x, y\}) = \{x\}$. Notice that, by definition, $x \neq x$.

► > is asymmetric.

Suppose not. Suppose x > y and y > x. Then $c(\{x, y\}) = \{x\}$ and $c(\{x, y\}) = \{y\}$. But both cannot be true.

> is negatively transitive.

Suppose that for some $x, y, z \in X, z \neq y$ and $y \neq x$. Show that $z \neq x$. That is, show that $x \in c(\{x, z\})$. It suffices to show $x \in c(\{x, y, z\})$, because then $x \in c(\{x, z\})$ follows from α .

Suppose that $x \notin c(\{x, y, z\})$. Then one or both of *y* and *z* are in $c(\{x, y, z\})$ because $c(\{x, y, z\}) \neq \emptyset$. We will show that neither of them can be in.

► $y \notin c(\{x, y, z\}).$

Suppose $y \in c(\{x, y, z\})$. Axiom α implies $y \in c(\{x, y\})$. Since $y \neq x, x \in c(\{x, y\})$. Axiom β implies $x \in c(\{x, y, z\})$.

► $z \notin c(\{x, y, z\}).$

Suppose $z \in c(\{x, y, z\})$. Axiom α implies $z \in c(\{y, z\})$. $z \neq y$ implies $y \in c(\{y, z\})$. Axiom β implies $y \in c(\{x, y, z\})$.

proof

"Revealed preferred to" > is a preference relation. Now we have to show that for all $A \in P^+(A)$, $c(A) = c_>(A)$.

Suppose $x \in c(A)$.

 α implies $x \in c(\{x, y\})$ for all $y \in A$. By definition, for all $y \in A$, $y \neq x$. Thus $x \in c_{>}(A)$.

• Suppose $\in c_{>}(A)$.

Then for all $y \in A$, $y \neq x$, and so $x \in c(\{x, y\})$. Choose $z \in C(A)$. If $z \neq x$, axiom α implies $z \in c(\{x, z\})$, so $c(\{x, z\}) = \{x, z\}$. Axiom β now implies $x \in C(A)$.

QED

WARP

An alternative characterization of preference-based choice functions:

Weak Axiom of Revealed Preference: If $x, y \in A \cap B$ and $x \in c(A)$ and $y \in c(B)$, then $x \in c(B)$ and $y \in c(A)$.

This axiom is called Houthakker's Axiom, or WARP.

Proposition: *c* satisfies axioms α and β iff it satisfies WARP.

Proof: ?

Partial Orders

We have already dissed completeness of \geq .

Definition: > is a partial order iff it is asymmetric and transitive. Problem: Characterize $c_>$ for partial orders. Axiom α still holds, but β may feel. See homework 1.

Now we do not want to define indifference as before, since the usual definition expresses both indifference and non-comparability. One could define the pair (>, ~) and theorize about the pair.