How Reasonable are the Axioms?

All the axioms that Savage and von NeumannMorgenstern use seem so reasonable.

- Savage views his axioms as characterizing rationality

Is that reasonable?

To make matters worse, people make lots of systematic probability errors.

Allais Paradox

The set of prizes is $X=\{\$ 0, \$ 1,000,000, \$ 5,000,000\}$.

- Which probability do you prefer:

$$
p_{1}=(0.00,1.00,0.00) \text { or } p_{2}=(0.01,0.89,0.10) ?
$$

- Which probability do you prefer:

$$
p_{3}=(0.90,0.00,0.10) \text { or } p_{4}=(0.89,0.11,0.00) ?
$$

Many subjects report: $p_{1} \succ p_{2}$ and $p_{3} \succ p_{4}$

Inconsistent with EUT

Suppose (u_{0}, u_{1}, u_{5}) represents \succ.
Then $p_{1} \succ p_{2}$ implies

$$
\begin{aligned}
u_{1} & >.01 u_{0}+.89 u_{1}+.1 u_{5} \\
.11 u_{1}-.01 u_{0} & >.1 u_{5} \\
.11 u_{1}+.89 u_{0} & >.1 u_{5}+.9 u_{0}
\end{aligned}
$$

So $p_{4} \succ p_{3}$.
Which axiom is violated?
Independence: $a \succ b$ iff $\alpha a+(1-\alpha) c \succ \alpha b+(1-\alpha) c$.

- homework - explain exactly how.

Ellsberg Paradox

There is one urn with with 300 balls: 100 of these balls are red (R) and the rest are either blue (B) or yellow(Y). Consider the following two choice situations:

I: a. Win $\$ 100$ if a ball drawn from the urn is R and nothing otherwise.
a^{\prime}. Win $\$ 100$ if a ball drawn from the urn is B and nothing otherwise.

II: b. Win $\$ 100$ if a ball drawn from the urn is R or Y and nothing otherwise.
b^{\prime}. Win $\$ 100$ if a ball drawn from the urn is B or Y and nothing otherwise.

Inconsistent with SEU

Suppose a decision maker's preferences are such that $a \succ a^{\prime}$ and $b^{\prime} \succ b$.

If there are subjective probabilities then the first choice implies that the probability of a red ball is greater than the probability of a blue ball and the second choice implies the reverse.

Which of Savage's axioms is violated?

- Independence: Remember that an act is a function from states to outcomes. Let $T \subseteq S$ be a subset of states. Then

$$
f_{T} g \succeq f_{T}^{\prime} g \text { iff } f_{T} h \succeq f_{T}^{\prime} h .
$$

Homework: prove that the standard choices in the Ellsberg paradox violate this.

Maxmin Expected Utility Rule

Suppose that the decision maker's uncertainty can be represented by a set \mathcal{P} of probabilities. Let

$$
\underline{E}_{\mathcal{P}}\left(u_{a}\right)=\inf _{\operatorname{Pr} \in \mathcal{P}}\left\{E_{\operatorname{Pr}}\left(u_{a}\right): \operatorname{Pr} \in \mathcal{P}\right\}
$$

Recall the maximin expected utility rule: (covered earlier in the course):

- $a>_{\mathcal{P}}^{1} a^{\prime}$ iff $\underline{E}_{\mathcal{P}}\left(u_{a}\right)>\underline{E}_{\mathcal{P}}\left(u_{a^{\prime}}\right)$

This is like maximin:

- Optimizing the worst-case expectation

This could explain the Ellsberg Paradox:

- Let $\mathcal{P}=\left\{\left(1 / 3, p_{B}, p_{Y}\right): 0 \leq p_{B} \leq 2 / 3\right\}$

Gilboa and Schmeidler axiomatized the maxmin expected utility rule

- It does not satisfy independence
- Gilboa and Schmeidler replaced independence by a weaker axiom.

Framing Effects-Kahneman and Tversky

A disease is expected to kill 600 people. Two alternative programs have been proposed:

- Program A: 200 people will be saved
- Program B: probability $1 / 3$: 600 people will be saved probability $2 / 3$: no one will be saved

Which program would you favor?

Framing Effects-Kahneman and Tversky

A disease is expected to kill 600 people. Two alternative programs have been proposed:

- Program C: 400 people will die
- Program D: probability $1 / 3$: no one will die probability 2/3: 600 will die

Which program would you favor?

Framing Effects-Kahneman and Tversky

Kahneman and Tversky found:

- 72% chose A over B.
- 22% chose C over D.

But if 200 people will be saved out of 600 is the same to the decision-maker as 400 people will die out of 600 , and so on, then A and C are identical and so are B and D.

Conjunction Fallacy or Failure of Extensionality

Tom is a rancher from Montana.
Which bet would you prefer?

- Win $\$ 10$ if Tom drives either a Ford or a Chevy, otherwise win nothing
- Win $\$ 10$ if Tom drives either a Chevy truck or Ford truck, otherwise win nothing

Kahneman and Tversky experiment:
Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations. Which is more probable?

- Linda is a bank teller.
- Linda is a bank teller and is active in the feminist movement.
85% of subjects chose the second option.

Another systemic error: ignoring priors

A cab was involved in a hit and run accident last night. Two cab companies, Green and Blue, operate in the city.

You know:

- A witness identified the cab as Blue.
- Witnesses are pretty reliable: Tests have shown that in similar cirumstances witnesses correctly identify each of the two cabs 80% of the time and misidentify them 20% of the time.
- 85% of the cabs in the city are Green the rest are Blue.

What is the probability that the cab involved in the accident was Blue?

The correct answer requires Bayes rule:

$$
\begin{aligned}
\operatorname{Pr}(B \mid i d B) & =\frac{\operatorname{Pr}(i d B \mid B) \operatorname{Pr}(B)}{\operatorname{Pr}(i d B)} \\
& =\frac{(.8)(.15)}{(.8)(.15)+(.2)(.85)} \\
& =.41
\end{aligned}
$$

