Experiment

Did the subjects make choices “as if” they had a preference relation \succ over bundles of (IC, HB)? If so, could we infer \succ and predict future choices or offer advice about choices?

In situation 2 the amount of money was $3.00 and the prices were $p_{HB} = .50$ and $p_{IC} = 1.00$; in situation 5 the amount of money was $3.60 and the prices were $p_{HB} = .60$ and $p_{IC} = 1.20$. The affordable set was the same in these two cases. So if the framing of the question doesn’t matter would expect the same choice in 2 as in 5.

22% of the subjects did not make the same choice in these two situations.

So we observe $x \succ y$ and $y \succ x$ for these people.
Lets look at situation 4 versus situation 1. In situation 4 the amount of money was $4.20 and the prices were $p_{HB} = .80$ and $p_{IC} = 1.20$; in situation 1 the amount of money was 3.60 and the prices were $p_{HB} = .40$ and $p_{IC} = 1.60$. The affordable sets in these two cases are graphed below.

If we observe choices x at 4 and y at 1 then we have $x \succ y$ and $y \succ x$. No one made choices like this.
Static Decision Theory Under Certainty

A set of objects X.

An individual is asked to express his preferences among these objects or is asked to make choices from subsets of X.

For $x, y \in X$ we can ask which, if either, is strictly preferred.

- If the individual says x is strictly better than y we write $x \succ y$, read as x is strictly preferred to y.

- \succ is a binary relation on X.

Example 1: $X = \{a, b, p\}$, $b \succ a$, $a \succ p$ and $b \succ p$.

What if the answers also included $a \succ b$?
Axioms

Asymmetry: For any \(x, y \in X \) if \(x \succ y \) then not\([y \succ x]\).

Negative Transitivity: For any \(x, y, z \in X \) if not\([x \succ y]\) and not\([y \succ z]\) then not\([x \succ z]\).

Proposition. The binary relation \(\succ \) is negatively transitive iff \(x \succ z \) implies that, for all \(y \in X \), \(x \succ y \) or \(y \succ z \).

Example 2: \(X = \{a, b, c\} \), \(b \succ a \), \(a \succ c \) and \(b \nmid c \). If we have asymmetry and NT you also know how \(b \) and \(c \) must be ranked.

Definition. A binary relation \(\succ \) is called a (strict) preference relation if it is asymmetric and negatively transitive.

Is Asymmetry a good normative or descriptive property? What about NT?
Weak Preference

Definition. For $x, y \in X$:

1. x is *weakly preferred* to y, $x \succeq y$, if not $[y \succ x]$.
2. x is *indifferent* to y, $x \sim y$, if not $[x \succ y]$ and not $[y \succ x]$.

Does the absence of strict preference in either direction require real indifference or could it permit non-comparability?

Example. $X = \{a, b, c\}$. Suppose a is not ranked (by \succ) relative to either b or c. If \succ satisfies NT, then b and c are not ranked either.

An interesting alternative would be to ask about \succ and \sim separately. Then define $x \succeq y$ as either $x \succ y$ or $x \sim y$. This permits the possibility that x and y are not comparable.
Definition. The binary relation \succeq on X is complete if for all $x, y \in X$, $x \succeq y$, $y \succeq x$ or both. It is transitive if $x \succeq y$ and $y \succeq z$ implies $x \succeq z$.

Proposition. Let \succ be a binary relation on X.

1. \succ is asymmetric iff \succeq is complete.

2. \succ is negatively transitive iff \succeq is transitive.

Proof of \Rightarrow

1. By asymmetry of \succ there is no pair $x, y \in X$ such that both $x \succ y$ and $y \succ x$. So at least one of not[$x \succ y$] and not[$y \succ x$] is true. Thus for any $x, y \in X$ either $y \succeq x$ or $x \succeq y$ or both. This is completeness.

2. Using the definition of \succeq, negative transitivity of \succ is: for any $x, y, z \in X$, $y \succeq x$ and $z \succeq y$ implies $z \succeq x$. This is transitivity.

\Leftarrow will be on homework 1.
Transitivity

Why do we care about transitivity?

Remark: If \(\succ \) is a preference relation then \(\succ \) is transitive.

Normative property?

Important for choice.

Example. \(X = \{a, b, p\} \). Consider a sequence of choices from among pairs.

1. \(\{a, b\} \), \(a \succ b \) and \(a \) is chosen.
2. \(\{a, p\} \), \(p \succ a \) and \(p \) is chosen.
3. \(\{p, b\} \), \(b \succ p \) and \(b \) is chosen.
4. \(\{a, b\} \ldots \)

Without transitivity can get cycles.

Remark: If \(\succ \) is a preference relation then \(\succ \) is acyclic, i.e. \([x_1 \succ x_2 \succ \ldots x_{n-1} \succ x_n] \Rightarrow [x_1 \neq x_n] \).
Choice

Extend binary comparisons to choice over a set of more objects.

A finite set of objects X. Let $P(X)$ be the set of all non-empty subsets of X.

Definition. For \succ a preference relation on X define $c(\cdot, \succ)$ by, for $A \in P(X)$,

$$c(A, \succ) = \{x \in A : \text{for all } y \in A, y \not\succ x\}.$$

Interpretation: $c(A, \succ)$ is the set of alternatives chosen from A by a decision maker with preferences \succ.

Remark: If $x, y \in c(A, \succ)$ then $x \sim y$.

Proposition. For \succ a preference relation on a finite set X,

$$c(\cdot, \succ) : P(X) \to P(X).$$
What else do we know about $c(\cdot, A)$?

Consider general choice functions and ask what is special about $c(\cdot, A)$.

Definition. A choice function for X is a function $c : P(X) \rightarrow P(X)$ such that for all $A \in P(X)$, $c(A) \subset A$.

Clearly, $c(\cdot, \succ)$ is a choice function.

Can any choice function be generated by some preference relation \succ? No.

Example. $X = \{a, b, c\}$.

1. $c(\{a, b, c\}) = \{a\}$ and $c(\{a, b\}) = \{b\} \Rightarrow$ a violation of asymmetry.

2. $c(\{a, b\}) = \{a, b\}$ and $c(\{a, b, c\}) = \{b\} \Rightarrow$ a violation of NT.
Axioms

Sen’s α. If $x \in B \subset A$ and $x \in C(A)$, then $x \in C(B)$.

Independence of Irrelevant Alternatives.

Proposition. If \succ is a preference relation then $c(\cdot, \succ)$ satisfies Sen’s α.

Proof. Suppose there are sets $A, B \in P(X)$ with $B \subset A$, $x \in c(A, \succ)$ and $x \notin c(B, \succ)$. Then there is a $y \in B$ such that $y \succ x$. Since $B \subset A$ we have $y \in A$ and $y \succ x$. Thus $x \notin c(A, \succ)$. A contradiction.
Sen’s β. If $x, y \in c(A), A \subset B$ and $y \in c(B)$ then $x \in C(B)$.

Proposition. If \succ is a preference relation then $c(\cdot, \succ)$ satisfies Sen’s β.

Proof. Since $x \in c(A, \succ)$ and $y \in A$ we have $y \not\succ x$. By definition, $y \in c(B, \succ)$ implies that for all $z \in B, z \not\succ y$. By negative transitivity, $y \not\succ x$ and $z \not\succ y$ implies $z \not\succ x$. Since $x \in B$ and this holds for all $z \in B$ we have $x \in c(B, \succ)$.
Are there any other restrictions on $c(\cdot, \succ)$ that follow from \succ being a preference relation? No.

Proposition. If a choice function c satisfies Sen’s α and β, then there is a preference relation \succ such that $c(\cdot) = c(\cdot, \succ)$.

Define the “revealed preference” relation \succ by

$$x \succ y \text{ if } x \neq y \text{ and } c(\{x, y\}) = \{x\}.$$

To prove the proposition we need to show that \succ is a preference relation and that $c(\cdot) = c(\cdot, \succ)$.
Proof

To show that \succ is a preference relation we need to show that it is asymmetric and negatively transitive.

1. Asymmetry. Suppose for some x and y, that $x \succ y$ and $y \succ x$. Then $c(\{x, y\}) = \{x\}$ and $c(\{x, y\}) = \{y\}$. A contradiction.

2. Negative Transitivity. Suppose that for some $x, y, z \in X$ we have $z \not\succ y$ and $y \not\succ x$. We need to show that $z \not\succ x$. This is $x \in c(\{x, z\})$. By Sen’s α, showing that $x \in c(\{x, y, z\})$ is sufficient. Suppose $x \not\in c(\{x, y, z\})$. Then at least one of y and z are in $c(\{x, y, z\})$.

Suppose $y \in c(\{x, y, z\})$. Then by Sen’s α, $y \in c(\{x, y\})$. By $y \not\succ x$ we have $x \in c(\{x, y\})$. By Sen’s β this implies that $x \in c(\{x, y, z\})$.

Suppose that $z \in c(\{x, y, z\})$. Then by Sen’s α, $z \in c(\{y, z\})$. By $z \not\succ y$ we have $y \in c(\{y, z\})$. By Sens’ β this implies that $y \in c(\{x, y, z\})$. By the previous argument this implies that $x \in c(\{x, y, z\})$.
We also need to show that for each $A \in P(X)$, $c(A) = c(A, \succ)$.

1. Suppose $x \in c(A)$. Then by Sen’s α, $x \in c(\{x, y\})$ for all $y \in A$. Thus for all $y \in A$, $y \not\succ x$. So $x \in c(A, \succ)$.

2. Suppose $x \in c(A, \succ)$. Then for all $y \in A$, $y \not\succ x$. So for all $y \in A$, $x \in c(\{x, y\})$. Suppose $x \not\in c(A)$. Then there is some $z \in A$, $z \neq x$ such that $z \in c(A)$. By Sen’s α, $z \in c(\{x, z\})$. Then $c(\{x, z\}) = \{x, z\}$, $\{x, z\} \subset A$ and $z \in c(A)$. So by Sen’s β, $x \in c(A)$. A contradiction.

So we know,

$$[\text{Sen’s } \alpha \text{ and } \beta \text{ for } c(\cdot)] \iff [c(\cdot) = c(\cdot, \succ) \text{ for the preference relation } \succ]$$
There is an alternative equivalent way to state Sen’s α and β.

This is Houthaker’s Axiom which is also called the *Weak Axiom of Revealed Preference (WARP).*

WARP: If x and y are both in A and B and if $x \in c(A)$ and $y \in c(B)$, then $x \in c(B)$ and $y \in C(A)$.

Proposition. $c(\cdot)$ satisfies Sen’s α and β if and only if it satisfies WARP.
Partial Orders

Completeness of \succeq is questionable from both a descriptive and a normative point of view.

Definition. \succ is a partial order if it is an asymmetric and transitive binary relation.

We can define a choice function as before. What properties does it have? Sen’s α still holds, but Sen’s β may fail. (On homework 1.)

Now we would not want to define \sim as before. $x \not\succ y$ and $y \not\succ x$ could express indifference or non-comparability.

An alternative approach is to include a positive expression of indifference, i.e. preferences described by the pair (\succ, \sim).