Allais Paradox

The set of prizes is $X = \{ \$0, \$1,000,000, \$5,000,000 \}$.

- Which probability do you prefer:
 $p_1 = (0.00, 1.00, 0.00)$ or $p_2 = (0.01, 0.89, 0.10)$?

- Which probability do you prefer:
 $p_3 = (0.90, 0.00, 0.10)$ or $p_4 = (0.89, 0.11, 0.00)$?

Many subjects report: $p_1 \succ p_2$ and $p_3 \succ p_4$
Inconsistent with EUT

Suppose \((u_0, u_1, u_5)\) represents \(\succ\).

Then \(p_1 \succ p_2\) implies

\[
\begin{align*}
u_1 &> .01u_0 + .89u_1 + .1u_5 \\
.11u_1 - .01u_0 &> .1u_5 \\
.11u_1 + .89u_0 &> .1u_5 + .9u_0.
\end{align*}
\]

So \(p_4 \succ p_3\).

What axiom is violated?

Independence
Inconsistent with Parallel Linear Indifference Curves
Ellsberg Paradox

There is one urn with 300 balls: 100 of these balls are red (R) and the rest are either blue (B) or yellow(Y). Consider the following two choice situations:

I: a. Win $100 if a ball drawn from the urn is R and nothing otherwise.

 a'. Win $100 if a ball drawn from the urn is B and nothing otherwise.

II: b. Win $100 if a ball drawn from the urn is R or Y and nothing otherwise.

 b'. Win $100 if a ball drawn from the urn is B or Y and nothing otherwise.
Inconsistent with SEU

Suppose a decision maker’s preferences are such that $a \succ a'$ and $b' \succ b$.

If there are subjective probabilities then the first choice implies that the probability of a red ball is greater than the probability of a blue ball and the second choice implies the reverse.

Which axiom is violated?
Violation of Savage’s Independence Axiom

State space, $S = \{R, B, Y\}$

Set of prizes, $X = \{0, 100\}$

- Lottery a is $a : S \rightarrow X$ such that $a(R) = 100, a(B) = 0, a(Y) = 0$.

- Lottery a' is $a' : S \rightarrow X$ such that $a'(R) = 0, a'(B) = 100, a'(Y) = 0$.

- Lottery b is $b : S \rightarrow X$ such that $b(R) = 100, b(B) = 0, b(Y) = 100$.

- Lottery b' is $b' : S \rightarrow X$ such that $b'(R) = 0, b'(B) = 100, b'(Y) = 100$.

Let $E = \{R, B\}$ and note that $S = E \cup \{Y\}$. On E, $a = b$ and $a' = b'$. Further $a(Y) = a'(Y)$ and $b(Y) = b'(Y)$. We have $a \succ a'$. The independence axiom then implies that $b \succ b'$. But we have $b' \succ b$. So the independence axiom is violated.
Multiple Priors

Suppose that the decision maker’s uncertainty can be represented by a set probabilities for blue and yellow and he chooses using the most pessimistic belief.

Could this decision maker chose the observed outcomes in the Ellsberg Paradox?

Let \(p = (1/3, p_B, p_Y) \) be a probability on the draw. The decision maker has a set \(P \) of probabilities.

In any choice situation the decision maker chooses using a maximin rule: For each lottery evaluate expected utility using the probability in \(P \) that minimizes expected utility. Select the lottery that maximizes over these minimized values. (See Professor Halpern’s lecture on decision rules.)
• Note that \(a \succ a' \) implies that
\[
\frac{1}{3}u(100) + 2/3u(0) > \min_{p_B} \{p_Bu(100)+(1-p_B)u(0)\}
\]
• Similarly \(b \succ b' \) implies that
\[
\frac{1}{3}u(0)+2/3u(100) > \min_{p_B} \{(1-p_B)u(100)+p_Bu(0)\}
\]
• Let \(\underline{p_B} \) be the minimum \(p_B \in P \) and \(\overline{p_B} \) be the maximum \(p_B \in P \).
• The first equation above implies that \(1/3 > \underline{p_B} \).
• The second equation above implies that \(\overline{p_B} > 1/3 \).
• So \(P \) must contain some \(p_B < 1/3 \) and some \(p_B > 1/3 \).
Maximin Expected Utility

Let \mathcal{P} be a set of probabilities on the prizes X.
Professor Halpern defined Maximin Expected Utility of the act a as

$$\underline{EP}(u_a) = \inf_{Pr \in \mathcal{P}} \{ E_{Pr}(u_a) : Pr \in \mathcal{P} \}$$

Then for a decision maker using the Maximin Expected Utility Decision Rule we have

$$a \succ b \text{ if and only if } \underline{EP}(u_a) > \underline{EP}(u_b)$$

Gilboa and Schmeidler, *Journal of Mathematical Economics*, 1989 provide an axiomatic foundation for this decision rule.
Maximin Violates the Independence Axiom

Let $S = \{s_1, s_2\}$ and $\mathcal{P} = \{(1/4, 3/4), (2/3, 1/3)\}$.

Consider acts $a = (1, 1), b = (2, 0), c = (0, 2)$ where the first component is the prize on state 1 and so on. Suppose that $u(x) = x$ for prizes x.

Then $\mathbb{E}_P(u_a) = 1 > \mathbb{E}_P(u_b) = 1/2$. So $a \succ b$.

Now $1/2a + 1/2c = (1/2, 3/2)$ and $1/2b + 1/2c = (1, 1)$.

So $\mathbb{E}_P(u_{1/2a+1/2c}) = 5/6 < \mathbb{E}_P(u_{1/2b+1/2c}) = 1$.

So $1/2b + 1/2c \succ 1/2a + 1/2c$.

Gilboa and Schmeidler replace independence with a weaker axiom.
A cab was involved in a hit and run accident last night. Two cab companies, Green and Blue, operate in the city.

You know:

- 85% of the cabs in the city are Green the rest are Blue.
- A witness identified the cab as Blue.
- Tests have shown that in similar circumstances witnesses correctly identify each of the two cabs 80% of the time and misidentify them 20% of the time.

What is the probability that the cab involved in the accident was Blue?
The correct answer is

\[Pr(B|idB) = \frac{Pr(idB|B)Pr(B)}{Pr(idB)} = \frac{.8(.15)}{(.8)(.15) + (.2)(.85)} = .41 \]
Framing Effects—Kahneman and Tversky

A disease is expected to kill 600 people. Two alternative programs have been proposed:

- Program A: 200 people will be saved
- Program B: probability 1/3: 600 people will be saved probability 2/3: no one will be saved

Which Program Would you favor?
Framing Effects—Kahneman and Tversky

A disease is expected to kill 600 people. Two alternative programs have been proposed:

- Program C: 400 people will die
- Program D: probability 1/3: no one will die
 probability 2/3: 600 will die

Which Program Would you favor?
Framing Effects—Kahneman and Tversky

Kahneman and Tversky found:

• 72% chose A over B.
• 22% chose C over D.

But if 200 people will be saved out of 600 is the same to the decision-maker as 400 people will die out of 600, and so on, then A and C are identical and so are B and D.
Conjunction Fallacy or Failure of Extensionality

Tom is a rancher from Montana.

Which bet would you prefer?

- Win $10 if Tom drives either a Ford or a Chevy, otherwise win nothing
- Win $10 if Tom drives either a Chevy truck or Ford truck, otherwise win nothing

Kahneman and Tversky experiment:
Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations. Which is more probable?

- Linda is a bank teller.
- Linda is a bank teller and is active in the feminist movement.

85% of subjects chose the second option.