Model Loss (Error)

- Squared loss of model on test case i:
 \[
 (\text{Learn}(x_i, D) - \text{Truth}(x_i))^2
 \]

- Expected prediction error:
 \[
 \left\langle (\text{Learn}(x, D) - \text{Truth}(x))^2 \right\rangle_D
 \]

Bias/Variance Decomposition

\[
\left\langle (L(x, D) - T(x))^2 \right\rangle_D = \text{Noise}^2 + \text{Bias}^2 + \text{Variance}
\]

- \(\text{Noise}^2\) = lower bound on performance
- \(\text{Bias}^2\) = (expected error due to model mismatch)\(^2\)
- \(\text{Variance}\) = variation due to train sample and randomization
Bias²

- Low bias
 - linear regression applied to linear data
 - 2nd degree polynomial applied to quadratic data
 - ANN with many hidden units trained to completion
- High bias
 - constant function
 - linear regression applied to non-linear data
 - ANN with few hidden units applied to non-linear data

Variance

- Low variance
 - constant function
 - model independent of training data
 - model depends on stable measures of data
 - mean
 - median
- High variance
 - high degree polynomial
 - ANN with many hidden units trained to completion

Sources of Variance in Supervised Learning

- noise in targets or input attributes
- bias (model mismatch)
- training sample
- randomness in learning algorithm
 - neural net weight initialization
- randomized subsetting of train set:
 - cross validation, train and early stopping set

Bias/Variance Tradeoff

- (bias²+variance) is what counts for prediction
- Often:
 - low bias => high variance
 - low variance => high bias
- Tradeoff:
 - bias² vs. variance
Bias/Variance Tradeoff

Bias/Variance Tradeoff

Hastie, Tibshirani, Friedman “Elements of Statistical Learning” 2001

Reduce Variance Without Increasing Bias

• Averaging reduces variance:

\[
\text{Var}(\bar{X}) = \frac{\text{Var}(X)}{N}
\]

• Average models to reduce model variance
• One problem:
 – only one train set
 – where do multiple models come from?

Bagging: Bootstrap Aggregation

• Leo Breiman (1994)
• Bootstrap Sample:
 – draw sample of size |D| with replacement from D

Train \(L_i(\text{BootstrapSample}(D)) \)

Regression: \(L_{\text{bagging}} = \bar{L_i} \)

Classification: \(L_{\text{bagging}} = \text{Plurality}(L_i) \)
Bagging

- Best case:
 \[\text{Var}(ext{Bagging}(L(x, D))) = \frac{\text{Variance}(L(x, D))}{N} \]

- In practice:
 - models are correlated, so reduction is smaller than 1/N
 - variance of models trained on fewer training cases usually somewhat larger
 - stable learning methods have low variance to begin with, so bagging may not help much

Bagging Results

<table>
<thead>
<tr>
<th>Data Set</th>
<th>(\epsilon_S)</th>
<th>(\epsilon_B)</th>
<th>Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>waveform</td>
<td>29.0</td>
<td>19.4</td>
<td>33%</td>
</tr>
<tr>
<td>heart</td>
<td>10.0</td>
<td>5.3</td>
<td>47%</td>
</tr>
<tr>
<td>breast cancer</td>
<td>6.0</td>
<td>4.2</td>
<td>30%</td>
</tr>
<tr>
<td>ionosphere</td>
<td>11.2</td>
<td>8.6</td>
<td>23%</td>
</tr>
<tr>
<td>diabetes</td>
<td>23.4</td>
<td>18.8</td>
<td>20%</td>
</tr>
<tr>
<td>glass</td>
<td>32.0</td>
<td>24.9</td>
<td>22%</td>
</tr>
<tr>
<td>soybean</td>
<td>14.5</td>
<td>10.6</td>
<td>27%</td>
</tr>
</tbody>
</table>

Breiman “Bagging Predictors” Berkeley Statistics Department TR#421, 1994

How Many Bootstrap Samples?

<table>
<thead>
<tr>
<th>No. Bootstrap Replicates</th>
<th>Missclassification Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>21.8</td>
</tr>
<tr>
<td>25</td>
<td>19.5</td>
</tr>
<tr>
<td>50</td>
<td>19.4</td>
</tr>
<tr>
<td>100</td>
<td>19.4</td>
</tr>
</tbody>
</table>

Breiman “Bagging Predictors” Berkeley Statistics Department TR#421, 1994

More bagging results

Breiman “Bagging Predictors” Berkeley Statistics Department TR#421, 1994
More bagging results

Bagging with cross validation

- Train neural networks using 4-fold CV
 - Train on 3 folds earlystop on the fourth
 - At the end you have 4 neural nets

- How to make predictions on new examples?
 - Train a neural network until the mean earlystopping point
 - Average the predictions from the four neural networks

Can Bagging Hurt?
Can Bagging Hurt?

- Each base classifier is trained on less data
 - Only about 63.2% of the data points are in any bootstrap sample

- However the final model has seen all the data
 - On average a point will be in >50% of the bootstrap samples

Reduce Bias\(^2\) and Decrease Variance?

- Bagging reduces variance by averaging
- Bagging has little effect on bias
- Can we average and reduce bias?
- Yes:

Boosting

- Freund & Schapire:
 - theory for “weak learners” in late 80’s
- Weak Learner: performance on any train set is slightly better than chance prediction
- intended to answer a theoretical question, not as a practical way to improve learning
- tested in mid 90’s using not-so-weak learners
- works anyway!

Boosting

- Weight all training samples equally
- Train model on train set
- Compute error of model on train set
- \textit{Increase weights on train cases model gets wrong!}
- Train new model on re-weighted train set
- Re-compute errors on weighted train set
- Increase weights again on cases model gets wrong
- Repeat until tired (100+ iterations)
- Final model: \textit{weighted} prediction of each model
Boosting

Initialization

- **Algorithm AdaBoost.M1**
 - **Input**: sequence of m examples $(x_1, y_1), \ldots, (x_m, y_m)$ with labels $y_i \in \{1, \ldots, k\}$ weak learning algorithm $WeakLearn$
 - **Initialize** $D_1(i) = 1/m$ for all i.
 - Do for $t = 1, 2, \ldots, T$
 1. Call $WeakLearn$, providing it with the distribution D_t.
 2. Get back a hypothesis $h_t : X \rightarrow Y$.
 3. Calculate the error of h_t: $\epsilon_t = \sum_{i: h_t(x_i) \neq y_i} D_t(i)$.
 4. If $\epsilon_t > 1/2$, then set $T = t - 1$ and abort loop.
 5. Set $\beta_t = \epsilon_t / (1 - \epsilon_t)$.
 6. Update distribution D_{t+1}:

 $$D_{t+1}(i) = \frac{D_t(i) \beta_t}{Z_t}$$

 where Z_t is a normalization constant (chosen so that D_{t+1} will be a distribution).

Final Model

- Output the final hypothesis:

 $$h_m(x) = \arg\max_{y \in Y} \sum_{i: h_t(x_i) = y} \frac{1}{\beta_t}$$

Iteration

- **Do for** $t = 1, 2, \ldots, T$:
 1. Call $WeakLearn$, providing it with the distribution D_t.
 2. Get back a hypothesis $h_t : X \rightarrow Y$.
 3. Calculate the error of h_t: $\epsilon_t = \sum_{i: h_t(x_i) \neq y_i} D_t(i)$.

 If $\epsilon_t > 1/2$, then set $T = t - 1$ and abort loop.
 4. Set $\beta_t = \epsilon_t / (1 - \epsilon_t)$.
 5. Update distribution D_{t+1}:

 $$D_{t+1}(i) = \frac{D_t(i) \beta_t}{Z_t}$$

 where Z_t is a normalization constant (chosen so that D_{t+1} will be a distribution).

Final Model

- Output the final hypothesis:

 $$h_m(x) = \arg\max_{y \in Y} \sum_{i: h_t(x_i) = y} \frac{1}{\beta_t}$$

Final Model

- Output the final hypothesis:

 $$h_m(x) = \arg\max_{y \in Y} \sum_{i: h_t(x_i) = y} \frac{1}{\beta_t}$$
Weight updates

- Weights for incorrect instances are multiplied by 1/(2Error_i)
 - Small train set errors cause weights to grow by several orders of magnitude

- Total weight of misclassified examples is 0.5

- Total weight of correctly classified examples is 0.5

Reweighting vs Resampling

- Example weights might be harder to deal with
 - Some learning methods can’t use weights on examples
 - Many common packages don’t support weights on the train

- We can resample instead:
 - Draw a bootstrap sample from the data with the probability of drawing each example is proportional to it’s weight

- Reweighting usually works better but resampling is easier to implement

Boosting Performance

Boosting vs. Bagging

- Bagging doesn’t work so well with stable models. Boosting might still help.

- Boosting might hurt performance on noisy datasets. Bagging doesn’t have this problem

- In practice bagging almost always helps.
Boosting vs. Bagging

- On average, boosting helps more than bagging, but it is also more common for boosting to hurt performance.
- The weights grow exponentially. Code must be written carefully (store log of weights, …)
- Bagging is easier to parallelize.

Bagged Decision Trees

- Draw 100 bootstrap samples of data
- Train trees on each sample -> 100 trees
- Un-weighted average prediction of trees

Model Averaging

- Almost always helps
- Often easy to do
- Models shouldn’t be too similar
- Models should all have pretty good performance (not too many lemons)
- When averaging, favor low bias, high variance
- Models can individually overfit
- Not just in ML

Random Forests (Bagged Trees++)

- Draw **1000+** bootstrap samples of data
- **Draw sample of available attributes at each split**
- Train trees on each sample/attribute set -> **1000+** trees
- Un-weighted average prediction of trees
Out of Bag Samples

- With bagging, each model trained on about 63% of training sample
- That means each model does not use 37% of data
- Treat these as test points!
 - Backfitting in trees
 - Pseudo cross validation
 - Early stopping sets