
CS578 Fall 2006
Empirical Methods in Machine Learning and Data Mining
Homework Assignment #3
Due: Thursday, November 2 2006

The goal of this assignment is to implement k−nearest neighbor (kNN)
and run a few experiments with kNN and cross validation. You can use
any programming language you want, but faster languages such as C will
make it easier to run the experiments.

Here are some features the code should support:

 − should work for different values of k
 − should work for both classification and regression problems.
 regression is very easy −− just average (or weighted average)
 of the values; classification requires a little more work since
 you have to count how many of the nearest neighbors are in each
 class.
 − the distance function should support feature weights, but it
 does not have to optimize those feature weights −− see extra
 credit below. for most of your experiments you should set
 the feature weights to 1.0
 − should support leave−one−out−cross−validation (LOOCV) and
 report the LOOCV accuracy and RMSE. experimenting with ROC
 is extra credit.
 − should support kNN (prediction is the average or predominant
 class of the k−nearest neighbors), weighted kNN (prediction
 is based on the k−nearest neighbors, but weighted by their
 distance to the test case), and locally weighted averaging
 (prediction depends on all cases in the train set, not just
 the nearest k, weighted by their distance to the test case).
 note that these are so similar to each other you can write just
 one loop that does all three.
 − in classification problems, should calculate a probability that
 the test case is in each of the classes

EXPERIMENTS:

 1: We have put a dataset on the web for you to use. It contains
 15,000 cases and 144 attributes. From this data you will
 predict a boolean variable (two classes). The class to
 predict is the last column in the dataset.

 2: Using LOOCV, experiment with different values of k to find
 which k works best. Do this using unweighted kNN (i.e., the
 distance is not taken into account).

 3: Vary the size of the training set to create learning curves
 for different values of k. Does the best value of k change
 when the train set size changes?

 4: Instead of kNN, switch to locally weighted averaging where you
 us all cases in the train set, but their predictions are weighted
 inversely by distance. Use weights that fall off exponentially
 with distance. Experiment with different values for the kernel
 width which controls how quickly the vote of a training case falls
 off with distance. Which is best? Does the best kernel width
 change with the size of the training set?

 5: Weight features with weights equal to 1/variance or 1/(max−min).
 This helps compensate for features that have unusually small or
 large ranges or which vary much more or much less than other

Oct 19, 06 14:24 Page 1/2hw3.txt
 features. Does performance improve when you do this?

EXTRA CREDIT −− do one or more of the following::

 − implement and experiment with n−fold cross validation
 − experiment with kNN on the data from hw1.
 − experimetn with ROC Area in addition to accuracy and RMSE
 − try to optimize the feature weights to improve performance by
 applying some form of numerical optimization to the weights or
 by using something like information gain to scale the weights
 − do feature selection to find a subset of the features that seems
 to perform better than using all the features
 − implement and test locally weighted regression using simple local
 models such as linear regression.
 − experiment with different distance functions for locally weighted
 averaging or weighted kNN
 − do experiments with weighted kNN to find good values for k and the
 kernel width
 − modify your code so it uses a final test set that is held out of
 the train set used for LOOCV. once you find the best value of k
 or kernel width using LOOCV on the train set, report the
 performance of this model on the final test set
 − change the distance function to take into account different types
 of variables (e.g., boolean, nominal, ordinal, integer, and
 continuous). explain how you compute distance on each type, and
 how you combine the distances on different types into one total
 distance. does performance improve when you do this?

Hand in a brief summary (5 pages max) of the results with enough
documentation so that we can see what you did and how you did it. Do
not write a paper −− this is homework, not a project. You might want
to use your kNN code later in the class project, so effort spent now
to become familiar with kNN and write good code should pay off later.
Note that kNN and LOOCV with large training sets is computationally
expensive: you want to choose a good programming language and write
efficient code. Don’t wait until the last minute to run the
experiments.

Have fun.

Oct 19, 06 14:24 Page 2/2hw3.txt

Printed by Richard Caruana

Thursday October 19, 2006 hw3.txt

