Unsupervised Learning and Data Mining

Clustering

Supervised Learning

- Decision trees
- Artificial neural nets
- K-nearest neighbor
- Support vectors
- Linear regression
- Logistic regression
- ...

Supervised Learning

- F(x): true function (usually not known)
- D: training sample drawn from F(x)
Supervised Learning

- F(x): true function (usually not known)
- D: training sample drawn from F(x)
- G(x): model learned from training sample D
- Goal: $\mathbb{E}((F(x) - G(x))^2)$ is small (near zero) for future samples drawn from F(x)

Well Defined Goal:

Learn G(x) that is a good approximation to F(x) from training sample D

Know How to Measure Error:

Accuracy, RMSE, ROC, Cross Entropy, ...

Clustering ≠ Supervised Learning

Clustering = Unsupervised Learning
Supervised vs. Unsupervised Learning

Supervised
- \(y = F(x) \): true function
- \(D \): labeled training set
- \(D_i = \{ x_i, y_i \} \)
- \(y = G(x) \): model trained to predict labels \(D \)
- Goal:
 - \(E(F(x) - G(x))^2 \leq 0 \)
- Well defined criteria: Accuracy, RMSE, ...

Unsupervised
- Generator: true model
- \(D \): unlabeled data sample
- \(D_i = \{ x_i \} \)
- Learn
- Goal:
 - \(\text{????????} \)
- Well defined criteria: \(\text{????????} \)

What to Learn/Discover?
- Statistical Summaries
- Generators
- Density Estimation
- Patterns/Rules
- Associations
- Clusters/Groups
- Exceptions/Outliers
- Changes in Patterns Over Time or Location

Goals and Performance Criteria?
- Statistical Summaries
- Generators
- Density Estimation
- Patterns/Rules
- Associations
- Clusters/Groups
- Exceptions/Outliers
- Changes in Patterns Over Time or Location

Clustering
Clustering

- Given:
 - Data Set D (training set)
 - Similarity/distance metric/information
- Find:
 - Partitioning of data
 - Groups of similar/close items

Clustering

- Groups of similar customers
 - Similar demographics
 - Similar buying behavior
 - Similar health
- Similar products
 - Similar cost
 - Similar function
 - Similar store
 - …
- Similarity usually is domain/problem specific

Types of Clustering

- Partitioning
 - K-means clustering
 - K-medoids clustering
 - EM (expectation maximization) clustering
- Hierarchical
 - Divisive clustering (top down)
 - Agglomerative clustering (bottom up)
- Density-Based Methods
 - Regions of dense points separated by sparser regions of relatively low density

Types of Clustering

- Hard Clustering:
 - Each object is in one and only one cluster
- Soft Clustering:
 - Each object has a probability of being in each cluster
Two Types of Data/Distance Info

- N-dim vector space representation and distance metric
 - N-dim vector space representation and distance metric
 - D1: 57, M, 195.0, 125.0, 39.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0
 - D2: 78, M, 160.0, 100.0, 41.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0
 - Distance (D1, D2) = ???

- Pairwise distances between points (no N-dim space)
 - Similarity/dissimilarity matrix (upper or lower diagonal)
 - Distance: 0 = near, * = far
 - Similarity: 0 = far, * = near

Agglomerative Clustering

- Put each item in its own cluster (641 singletons)
- Find all pairwise distances between clusters
- Merge the two closest clusters
- Repeat until everything is in one cluster

- Hierarchical clustering
 - Yields a clustering with each possible # of clusters
 - Greedy clustering: not optimal for any cluster size

Agglomerative Clustering of Proteins

Merging: Closest Clusters

- Nearest centroids
- Nearest medoids
- Nearest neighbors (shortest link)
- Nearest average distance (average link)
- Smallest greatest distance (maximum link)
- Domain specific similarity measure
 - word frequency, TFIDF, KL-divergence, ...
- Merge clusters that optimize criterion after merge
 - minimum mean_point_happiness
Mean Distance Between Clusters

\[\text{Mean _ Dist} (c_1, c_2) = \frac{\sum_{i \in c_1} \sum_{j \in c_2} \text{Dist}(i, j)}{\sum_{i \in c_1} \sum_{j \in c_2} 1} \]

Minimum Distance Between Clusters

\[\text{Min _ Dist} (c_1, c_2) = \text{MIN} \left(\text{Dist}(i, j) \right) \]

Mean Internal Distance in Cluster

\[\text{Mean _ Internal _ Dist} (c) = \frac{\sum_{i \in c} \sum_{j \neq i} \text{Dist}(i, j)}{\sum_{i \in c} \sum_{j \neq i} 1} \]

Mean Point Happiness

\[\delta_{ij} = \begin{cases} 1 & \text{when cluster}(i) = \text{cluster}(j) \\ 0 & \text{when cluster}(i) \neq \text{cluster}(j) \end{cases} \]

\[\text{Mean _ Happiness} = \frac{\sum_i \sum_{j \neq i} \delta_{ij} \cdot \text{Dist}(i, j)}{\sum_i \sum_{j \neq i} \delta_{ij}} \]
Mean Point Happiness

Recursive Clusters + Random Noise
Clustering Proteins

Distance Between Helices

- Vector representation of protein data in 3-D space that gives x,y,z coordinates of each atom in helix

- Use a program developed by chemists (fortran) to convert 3-D atom coordinates into average atomic distances in angstroms between aligned helices

- 641 helices = 641 * 640 / 2
 = 205,120 pairwise distances
Agglomerative Clustering of Proteins

Cluster Size During Agglomerative Clustering

Cluster Purity vs. Cluster Size for PDB Structures

Number of PDB Structures in Cluster
Agglomerative Clustering

- Greedy clustering
 - once points are merged, never separated
 - suboptimal w.r.t. clustering criterion
- Combine greedy with iterative refinement
 - post processing
 - interleaved refinement

Agglomerative Clustering

- Computational Cost
 - $O(N^2)$ just to read/calculate pairwise distances
 - $N-1$ merges to build complete hierarchy
 - scan pairwise distances to find closest
 - calculate pairwise distances between clusters
 - fewer clusters to scan as clusters get larger
 - Overall $O(N^3)$ for simple implementations
- Improvements
 - sampling
 - dynamic sampling: add new points while merging
 - tricks for updating pairwise distances
K-Means Clustering

- Inputs: data set and k (number of clusters)
- Output: each point assigned to one of k clusters

K-Means Algorithm:
- Initialize the k-means
 - assign from randomly selected points
 - randomly or equally distributed in space
- Assign each point to nearest mean
- Update means from assigned points
- Repeat until convergence

K-Means Clustering: Convergence

- Squared-Error Criterion
 \[\text{Squared _Error} = \sum_{c} \sum_{i \in c} (\text{Dist}(i, \text{mean}(c)))^2 \]
- Converged when SE criterion stops changing
- Increasing K reduces SE - can’t determine K by finding minimum SE
- Instead, plot SE as function of K

K-Means Clustering

- Efficient
 - K << N, so assigning points is O(K*N) < O(N^2)
 - updating means can be done during assignment
 - usually # of iterations << N
 - Overall O(N*K*iterations) closer to O(N) than O(N^2)
- Gets stuck in local minima
 - Sensitive to initialization
- Number of clusters must be pre-specified
- Requires vector space data to calculate means

Soft K-Means Clustering

- Instance of EM (Expectation Maximization)
- Like K-Means, except each point is assigned to each cluster with a probability
- Cluster means updated using weighted average
- Generalizes to Standard_Deviation/Covariance
- Works well if cluster models are known
Soft K-Means Clustering (EM)

- Initialize model parameters:
 + means
 + std devs
 +...
- Assign points probabilistically to each cluster
- Update cluster parameters from weighted points
- Repeat until convergence to local minimum

K-Medoids Clustering

\[\text{Medoid}(c) = \arg \min_{pt \in c} \sum_{i \in c} \text{Dist}(i, pt) \]

What do we do if we can’t calculate cluster means?

- 1 2 3 4 5 6 7 8 9 10
- 1 - d d d d d d d d
- 2 - d d d d d d d d
- 3 - d d d d d d d d
- 4 - d d d d d d d d
- 5 - d d d d d d d d
- 6 - d d d d d d d d
- 7 - d d d d d d d d
- 8 - d d d d d d d d
- 9 - d d d d d d d d
- 10 - d d d d d d d d

K-Medoids Clustering

- Inputs: data set and k (number of clusters)
- Output: each point assigned to one of k clusters
- Initialize k medoids
 - pick points randomly
- Pick medoid and non-medoid point at random
- Evaluate quality of swap
 - Mean point happiness
- Accept random swap if it improves cluster quality
Cost of K-Means Clustering
- n cases; d dimensions; k centers; i iterations
- compute distance each point to each center: \(O(n^*d^*k)\)
- assign each of n cases to closest center: \(O(n^*k)\)
- update centers (means) from assigned points: \(O(n^*d^*k)\)
- repeat i times until convergence
- overall: \(O(n^*d^*k^*i)\)
- much better than \(O(n^2)\)-\(O(n^3)\) for HAC
- sensitive to initialization - run many times
- usually don’t know k - run many times with different k
- requires many passes through data set

Graph-Based Clustering

Scaling Clustering to Big Databases
- K-means is still expensive: \(O(n^*d^*k^*I)\)
- Requires multiple passes through database
- Multiple scans may not be practical when:
 - database doesn’t fit in memory
 - database is very large:
 - \(\sim 10^9\) to \(10^9\) (or more) records
 - \(\sim 10^9\) attributes
 - expensive join over distributed databases

Goals
- 1 scan of database
- early termination, on-line, anytime algorithm yields current best answer
Scale-Up Clustering?

- Large number of cases (big n)
- Large number of attributes (big d)
- Large number of clusters (big c)