
CS578 Fall 2006
Empirical Methods in Machine Learning and Data Mining 
Homework Assignment #2
Due: Tuesday, October 17, 2006 at 2:55pm *before* class

The goal of this assignment is to experiment with artificial neural
nets trained with backpropagation, early stopping, and N−fold cross
validation.  For this assignment use the hw1.dta dataset used in the
first assignment.  The goal is to predict the boolean variable in col
1 from the other attributes.  You will have to recode the data so it
can be given as input to a neural net.  One way to do this is to
convert N−arity nominal attributes to N boolean inputs on the net.
Another way is to use only one input for each N−arity nominal
attribute by treating the values as ordered numbers.  As in HW1, you
will experiment with both codings.

You may implement backprop yourself, or use a commercial/public domain
implementation.  Note that it probably will take more time to install,
learn to use, and modify someone else’s implementation than to program
backprop yourself, so we encourage you to code backprop yourself.  In
fact, implementing bp yourself counts as extra credit.  If you decide
to use someone else’s package, it is up to you to install it and make
sure that it will support the experiments needed for this assignment.
One public domain package you might want to consider that runs on a
variety of platforms is SNNS: Stuttgart Neural Network Simulator.
There also is a Matlab toolbox for neural nets that is supposed to be
pretty good.

In this assignment we will use Accuracy, RMSE, and ROC Area as the
performance measures.  C−code for calculating ROC Area is available on
the course web page.  The program is called perf.c, and calculates a
number of performance measures such as Accuracy, RMSE, and ROC Area.
(ROC will be discussed in class next week.)

EXPERIMENTS:

 0: Code each attribute by splitting nominal attributes into boolean
    attributes.  This is already done for you in the data for HW1.  
    Make sure that the output target is scaled 0−1 so that you can 
    use a sigmoid output unit.

    Draw one random sample of 10,000 points from the data set to 
    use for your experiments.  Save the remaining 15,000 points 
    as a final, final test set.

 1: For neural nets, you need train sets (backprop sets), early
    stopping sets (technically part of the train set), and test 
    sets.  Use N−fold CV from the 10k cases for the train/test sets.  
    The early stopping set should be held out of the train
    set.  One way to do this is to split the data into 5 2k folds.
    Do backprop on folds 1−3 (60% of the train data), use fold
    4 for early stopping (20% of the train data), and test on
    fold 5.  Repeat this process 5 times for 5−fold CV. There 
    are other ways to do this and you don’t have to use 5−fold CV.  
    Carefully explain how you choose to do N−fold CV.  A diagram 
    or table showing the splits might be helpful.

 2: Train fully−connected feedforward neural nets using vanilla
    backpropagation with momentum.  Every backprop implementation
    defines learning rate and momentum somewhat differently, and
    the definitions often vary when using batch mode (updating
    once per epoch −− full pass through the training set) or when
    updating per pattern, so you’ll have to experiment with the 
    parameter  settings to find values that work well with your code.
    You can use batch mode, per pattern, or per group of pattern 
    updating.  (HINT: If the nets are fully trained after less than
    200 passes through the train set you’re probably training too
    fast.  If the nets are taking more than 10^6 passes through the
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    train set you’re probably training slower than necessary.)  Feel
    free to use any number of hidden units that seems to work.  I
    often use 16 or 32 hidden units when starting on a new problem.

 3: Compute accuracy, RMSE, and ROC Area on the train, stopping,
    and test sets. Show graphs of performance vs number of epochs
    for the train and early stopping sets.  The performances on the
    test sets should be reported at the early stopping point.  Are the
    early stopping points for accuracy, RMSE, and ROC Area the same?

 4: Try an alternate coding of the input attributes such as converting
    nominal attributes to N−valued inputs (e.g. code as integers).  Repeat 
    the experiment above.  How does performance with this alternate coding
    compare with the boolean coding?

 5: Using the boolean coding, experiment with different numbers of
    hidden units.  You might try 1,2,4,8,16,32,64,... or even
    1,4,16,64,...  What size net yields best generalization
    performance?

EXTRA CREDIT −− do one or more of the following:

 − experiment with different size training sets (generate a learning
   curve). how does the performance change with the size of the
   training set? does the optimal net size change?
 − there are different ways to convert the nominal attributes to boolean
   attributes.  try something clever.  one idea might be to use the
   decision trees trained in HW1 to help you decide how to code the
   nominal attributes for the neural nets.
 − recode the inputs so that they are symmetric about 0 (i.e., go
   negative and positive).  does this change performance?
 − N−fold CV leaves you with N or more trained neural nets. compare
   the average prediction of these nets with the performance of each
   of the nets alone to see which works better.  use the final, final
   test set of 15k cases as the test set for this comparison.
 − do a study of the effect of altering the learning rate and 
   momentum on the generalization performance of the nets
 − try nets with two or more hidden layers.  do they perform better
   than nets with one hidden layer?  are they harder to train?
 − is there a difference in generalization performance and training
   time between batch mode updates and per pattern or per group of
   pattern updating?
 − compare weight decay with early stopping.  does one perform better
   than the other?  is one easier to use than the other?
 − use cross−entropy to train the net.  does training on cross−entropy
   yield better accuracy than training on squared error?
 − do feature selection to find a subset of the features that seems
   to perform better than using all the features
 − do a sensitivity analysis to figure out what inputs the trained
   nets use most.  sensitivity analysis can be done by looking at
   derivatives of the output of the net with respect to the inputs,
   or by experimenting with injecting noise into the inputs one at a
   time
 − implement vanilla backprop with momentum for fully−connected 
   feedforward neural nets containing one hidden layer and trained
   with squared error
 
Hand in a brief (5 pages or less for the main assignment) summary of
the results with enough documentation so that we can see what you did
and how you did it.  Do not write a paper.  This is homework, not a
class project.  You’ll probably want to use the neural net code for
the class project, so effort spent now to write good code or become
familiar with the package you use should pay off later.  Attach a
copy of any code you write to the report you hand in.

Have fun.
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