
CS578 Fall 2006
Empirical Methods in Machine Learning and Data Mining
Homework Assignment #2
Due: Tuesday, October 17, 2006 at 2:55pm *before* class

The goal of this assignment is to experiment with artificial neural
nets trained with backpropagation, early stopping, and N−fold cross
validation. For this assignment use the hw1.dta dataset used in the
first assignment. The goal is to predict the boolean variable in col
1 from the other attributes. You will have to recode the data so it
can be given as input to a neural net. One way to do this is to
convert N−arity nominal attributes to N boolean inputs on the net.
Another way is to use only one input for each N−arity nominal
attribute by treating the values as ordered numbers. As in HW1, you
will experiment with both codings.

You may implement backprop yourself, or use a commercial/public domain
implementation. Note that it probably will take more time to install,
learn to use, and modify someone else’s implementation than to program
backprop yourself, so we encourage you to code backprop yourself. In
fact, implementing bp yourself counts as extra credit. If you decide
to use someone else’s package, it is up to you to install it and make
sure that it will support the experiments needed for this assignment.
One public domain package you might want to consider that runs on a
variety of platforms is SNNS: Stuttgart Neural Network Simulator.
There also is a Matlab toolbox for neural nets that is supposed to be
pretty good.

In this assignment we will use Accuracy, RMSE, and ROC Area as the
performance measures. C−code for calculating ROC Area is available on
the course web page. The program is called perf.c, and calculates a
number of performance measures such as Accuracy, RMSE, and ROC Area.
(ROC will be discussed in class next week.)

EXPERIMENTS:

 0: Code each attribute by splitting nominal attributes into boolean
 attributes. This is already done for you in the data for HW1.
 Make sure that the output target is scaled 0−1 so that you can
 use a sigmoid output unit.

 Draw one random sample of 10,000 points from the data set to
 use for your experiments. Save the remaining 15,000 points
 as a final, final test set.

 1: For neural nets, you need train sets (backprop sets), early
 stopping sets (technically part of the train set), and test
 sets. Use N−fold CV from the 10k cases for the train/test sets.
 The early stopping set should be held out of the train
 set. One way to do this is to split the data into 5 2k folds.
 Do backprop on folds 1−3 (60% of the train data), use fold
 4 for early stopping (20% of the train data), and test on
 fold 5. Repeat this process 5 times for 5−fold CV. There
 are other ways to do this and you don’t have to use 5−fold CV.
 Carefully explain how you choose to do N−fold CV. A diagram
 or table showing the splits might be helpful.

 2: Train fully−connected feedforward neural nets using vanilla
 backpropagation with momentum. Every backprop implementation
 defines learning rate and momentum somewhat differently, and
 the definitions often vary when using batch mode (updating
 once per epoch −− full pass through the training set) or when
 updating per pattern, so you’ll have to experiment with the
 parameter settings to find values that work well with your code.
 You can use batch mode, per pattern, or per group of pattern
 updating. (HINT: If the nets are fully trained after less than
 200 passes through the train set you’re probably training too
 fast. If the nets are taking more than 10^6 passes through the

Sep 26, 06 11:26 Page 1/2hw2.txt
 train set you’re probably training slower than necessary.) Feel
 free to use any number of hidden units that seems to work. I
 often use 16 or 32 hidden units when starting on a new problem.

 3: Compute accuracy, RMSE, and ROC Area on the train, stopping,
 and test sets. Show graphs of performance vs number of epochs
 for the train and early stopping sets. The performances on the
 test sets should be reported at the early stopping point. Are the
 early stopping points for accuracy, RMSE, and ROC Area the same?

 4: Try an alternate coding of the input attributes such as converting
 nominal attributes to N−valued inputs (e.g. code as integers). Repeat
 the experiment above. How does performance with this alternate coding
 compare with the boolean coding?

 5: Using the boolean coding, experiment with different numbers of
 hidden units. You might try 1,2,4,8,16,32,64,... or even
 1,4,16,64,... What size net yields best generalization
 performance?

EXTRA CREDIT −− do one or more of the following:

 − experiment with different size training sets (generate a learning
 curve). how does the performance change with the size of the
 training set? does the optimal net size change?
 − there are different ways to convert the nominal attributes to boolean
 attributes. try something clever. one idea might be to use the
 decision trees trained in HW1 to help you decide how to code the
 nominal attributes for the neural nets.
 − recode the inputs so that they are symmetric about 0 (i.e., go
 negative and positive). does this change performance?
 − N−fold CV leaves you with N or more trained neural nets. compare
 the average prediction of these nets with the performance of each
 of the nets alone to see which works better. use the final, final
 test set of 15k cases as the test set for this comparison.
 − do a study of the effect of altering the learning rate and
 momentum on the generalization performance of the nets
 − try nets with two or more hidden layers. do they perform better
 than nets with one hidden layer? are they harder to train?
 − is there a difference in generalization performance and training
 time between batch mode updates and per pattern or per group of
 pattern updating?
 − compare weight decay with early stopping. does one perform better
 than the other? is one easier to use than the other?
 − use cross−entropy to train the net. does training on cross−entropy
 yield better accuracy than training on squared error?
 − do feature selection to find a subset of the features that seems
 to perform better than using all the features
 − do a sensitivity analysis to figure out what inputs the trained
 nets use most. sensitivity analysis can be done by looking at
 derivatives of the output of the net with respect to the inputs,
 or by experimenting with injecting noise into the inputs one at a
 time
 − implement vanilla backprop with momentum for fully−connected
 feedforward neural nets containing one hidden layer and trained
 with squared error

Hand in a brief (5 pages or less for the main assignment) summary of
the results with enough documentation so that we can see what you did
and how you did it. Do not write a paper. This is homework, not a
class project. You’ll probably want to use the neural net code for
the class project, so effort spent now to write good code or become
familiar with the package you use should pay off later. Attach a
copy of any code you write to the report you hand in.

Have fun.

Sep 26, 06 11:26 Page 2/2hw2.txt
Printed by Richard Caruana

Tuesday September 26, 2006 hw2.txt

