Special Topic: Missing Values

“Missing” Can Mean Many Things

- MAR: "Missing at Random":
 - usually best case
 - usually not true
- Non-randomly missing
- Presumed normal, so not measured
- Causally missing:
 - attribute value is missing because of other attribute values (or because of the outcome value?)

Dealing With Missing Data

- Some learning methods can handle missing values
- Throw away cases with missing values
 - in some data sets, most cases get thrown away
 - if not missing at random, throwing away cases can bias sample towards certain kinds of cases
- Treat “missing” as a new attribute value
 - what value should we use to code for missing with continuous or ordinal attributes?
 - if missing causally related to what is being predicted?
- Impute (fill-in) missing values
 - once filled in, data set is easy to use
 - if missing values poorly predicted, may hurt performance of subsequent uses of data set

Missing Values Common in Real Data

- Pneumonia:
 - 6.3% of attribute values are missing
 - one attribute is missing in 61% of cases
- C-Section:
 - only about 1/2% of attribute values are missing
 - but 27.9% of cases have at least 1 missing value
- UCI machine learning repository:
 - 31 of 68 data sets reported to have missing values
Imputing Missing Values

- Fill-in with mean, median, or most common value
- Predict missing values using machine learning
- Expectation Minimization (EM):
 - Build model of data values (ignore missing vals)
 - Use model to estimate missing values
 - Build new model of data values (including estimated values from previous step)
 - Use new model to re-estimate missing values
 - Re-estimate model
 - Repeat until convergence

Potential Problems

- Imputed values may be inappropriate:
 - in medical databases, if missing values not imputed separately for male and female patients, may end up with male patients with 1.3 prior pregnancies, and female patients with low sperm counts
 - many of these situations will not be so humorous/obvious!
- If some attributes are difficult to predict, filled-in values may be random (or worse)
- Some of the best performing machine learning methods are impractical to use for filling in missing values (neural nets)
- Beware of coding - reliably detect missing cases can be difficult

Research in Handling Missing Values

- Lazy learning:
 - don’t train a model until you know test case
 - missing in test case may “shadow” missing values in train set
- Better algorithms:
 - Expectation maximization (EM)
 - Non-parametric methods (since parametric methods often work poorly when assumptions are violated)
- Faster Algorithms:
 - apply to very large datasets

Special Topic:
Feature Selection
Anti-Motivation

- Most learning methods implicitly do feature selection:
 - decision trees: use info gain or gain ratio to decide what attributes to use as tests. many features don’t get used.
 - neural nets: backprop learns strong connections to some inputs, and near-zero connections to other inputs.
 - kNN, MBL: weights in Weighted Euclidean Distance determine how important each feature is. weights near zero mean feature is not used.
 - SVMs: maximum margin hyperplane may focus on important features, ignore irrelevant features.
- So why do we need feature selection?

Motivation

- Typical Feature Selection Learning Curve
- Graph showing different outcomes for different numbers of input features.
Motivation

Brute-Force Approach

• Try all possible combinations of features
• Given N features, 2^N subsets of features
 – usually too many to try
 – danger of overfitting
• Train on train set, evaluate on test set (or use cross-validation)
• Use set of features that performs best on test set(s)

Two Basic Approaches

• Wrapper Methods:
 – give different sets of features to the learning algorithm and see which works better
 – algorithm dependent
• Proxy Methods (relevance determination methods)
 – determine what features are important or not important for the prediction problem without knowing/using what learning algorithm will be employed
 – algorithm independent

Wrapper Methods

• Wrapper methods find features that work best with some particular learning algorithm:
 – best features for kNN and neural nets may not be best features for decision trees
 – can eliminate features learning algorithm “has trouble with”
• Forward stepwise selection
• Backwards elimination
• Bi-directional stepwise selection and elimination
Relevance Determination Methods

- Rank features by information gain
 - Info Gain = reduction in entropy due to attribute
 \[
 \text{Entropy} = - \sum p_i \log_2 p_i \\
 \text{Gain}(S, A) = \text{Entropy}(S) - \frac{1}{|\text{Values}(A)|} \sum \text{Entropy}(S_v)
 \]
- Try first 10, 20, 30, ..., N features with learner
- Evaluate on test set (or use cross validation)
- May be only practical method if thousands of attributes

Advantages of Feature Selection

- Improved accuracy!
- Less complex models:
 - run faster
 - easier to understand, verify, explain
- Feature selection points you to most important features
- Don’t need to collect/process features not used in models

Limitations of Feature Selection

- Given many features, feature selection can overfit
 - consider 10 relevant features, and 10^9 random irrelevant features
- Wrapper methods require running base learning algorithm many times, which can be expensive!
- Just because feature selection doesn’t select a feature, doesn’t mean that feature isn’t a strong predictor
 - redundant features
- May throw away features domain experts want in model
- Most feature selection methods are greedy and won’t find optimal feature set

Current Research in Feature Selection

- Speeding-up feature selection (1000’s of features)
- Preventing overfitting (1000’s of features)
- Better proxy methods
 - would be nice to know what the good/relevant features are independent of the learning algorithm
- Irrelevance detection:
 - truly irrelevant attributes can be ignored
 - better algorithms
 - better definition(s)
Bottom Line

- Feature selection almost always improves accuracy on real problems
- Plus:
 - simpler, more intelligible models
 - features selected can tell you about problem
 - less features to collect when using model in future

Feature selection usually is a win.