Bias/Variance Tradeoff
Model Loss (Error)

- Squared loss of model on test case \(i \):
 \[
 (\text{Learn}(x_i, D) - \text{Truth}(x_i))^2
 \]

- Expected prediction error:
 \[
 \left\langle (\text{Learn}(x, D) - \text{Truth}(x))^2 \right\rangle_D
 \]
Bias/Variance Decomposition

$$\left\langle (L(x,D) \cdot T(x))^2 \right\rangle_D = \text{Noise}^2 + \text{Bias}^2 + \text{Variance}$$

\(\text{Noise}^2 = \) lower bound on performance

\(\text{Bias}^2 = \) (expected error due to model mismatch)\(^2\)

\(\text{Variance} = \) variation due to train sample and randomization
Bias2

- Low bias
 - linear regression applied to linear data
 - 2nd degree polynomial applied to quadratic data
 - ANN with many hidden units trained to completion
- High bias
 - constant function
 - linear regression applied to non-linear data
 - ANN with few hidden units applied to non-linear data
Variance

• **Low variance**
 - constant function
 - model independent of training data
 - model depends on stable measures of data
 • mean
 • median

• **High variance**
 - high degree polynomial
 - ANN with many hidden units trained to completion
Sources of Variance in Supervised Learning

- noise in targets or input attributes
- bias (model mismatch)
- training sample
- randomness in learning algorithm
 - neural net weight initialization
- randomized subsetting of train set:
 - cross validation, train and early stopping set
Bias/Variance Tradeoff

• $(\text{bias}^2 + \text{variance})$ is what counts for prediction
• Often:
 - low bias \Rightarrow high variance
 - low variance \Rightarrow high bias
• Tradeoff:
 - bias^2 vs. variance
Bias/Variance Tradeoff

Bias/Variance Tradeoff

Hastie, Tibshirani, Friedman “Elements of Statistical Learning” 2001
Reduce Variance Without Increasing Bias

• Averaging reduces variance:

\[
Var(\bar{X}) = \frac{Var(X)}{N}
\]

• Average models to reduce model variance
• One problem:
 – only one train set
 – where do multiple models come from?
Bagging: Bootstrap Aggregation

- Leo Breiman (1994)
- Bootstrap Sample:
 - draw sample of size $|D|$ with replacement from D

Train $L_i\left(\text{BootstrapSample}_i(D)\right)$

Regression: $L_{\text{bagging}} = \overline{L}_i$

Classification: $L_{\text{bagging}} = \text{Plurality}(L_i)$
Bagging

• Best case:

\[\text{Var}(\text{Bagging}(L(x, D))) = \frac{\text{Variance}(L(x, D))}{N} \]

• In practice:
 – models are correlated, so reduction is smaller than 1/N
 – variance of models trained on fewer training cases usually somewhat larger
 – stable learning methods have low variance to begin with, so bagging may not help much
Bagging Results

Table 1 Missclassification Rates (Percent)

<table>
<thead>
<tr>
<th>Data Set</th>
<th>(\bar{e}_S)</th>
<th>(\bar{e}_B)</th>
<th>Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>waveform</td>
<td>29.0</td>
<td>19.4</td>
<td>33%</td>
</tr>
<tr>
<td>heart</td>
<td>10.0</td>
<td>5.3</td>
<td>47%</td>
</tr>
<tr>
<td>breast cancer</td>
<td>6.0</td>
<td>4.2</td>
<td>30%</td>
</tr>
<tr>
<td>ionosphere</td>
<td>11.2</td>
<td>8.6</td>
<td>23%</td>
</tr>
<tr>
<td>diabetes</td>
<td>23.4</td>
<td>18.8</td>
<td>20%</td>
</tr>
<tr>
<td>glass</td>
<td>32.0</td>
<td>24.9</td>
<td>22%</td>
</tr>
<tr>
<td>soybean</td>
<td>14.5</td>
<td>10.6</td>
<td>27%</td>
</tr>
</tbody>
</table>

Breiman “Bagging Predictors” Berkeley Statistics Department TR#421, 1994
How Many Bootstrap Samples?

Table 5.1

<table>
<thead>
<tr>
<th>No. Bootstrap Replicates</th>
<th>Missclassification Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>21.8</td>
</tr>
<tr>
<td>25</td>
<td>19.5</td>
</tr>
<tr>
<td>50</td>
<td>19.4</td>
</tr>
<tr>
<td>100</td>
<td>19.4</td>
</tr>
</tbody>
</table>
More bagging results
More bagging results

SLAC3: Bagged MML Decision Trees (Buntine's IND, 75k subsamples w/o replacement)

Thu Sep 25 11:24:50 2003
Bagging with cross validation

• Train neural networks using 4-fold CV
 – Train on 3 folds earlystop on the fourth
 – At the end you have 4 neural nets

• How to make predictions on new examples?
Bagging with cross validation

• Train neural networks using 4-fold CV
 – Train on 3 folds earlystop on the fourth
 – At the end you have 4 neural nets

• How to make predictions on new examples?
 – Train a neural network until the mean earlystopping point
 – Average the predictions from the four neural networks
Can Bagging Hurt?
Can Bagging Hurt?

• Each base classifier is trained on less data
 – Only about 63.2% of the data points are in any bootstrap sample

• However the final model has seen all the data
 – On average a point will be in >50% of the bootstrap samples
Reduce Bias\(^2\) and Decrease Variance?

- Bagging reduces variance by averaging
- Bagging has little effect on bias
- Can we average \textit{and} reduce bias?
- Yes:

\textbf{Boosting}
Boosting

• Freund & Schapire:
 – theory for “weak learners” in late 80’s

• Weak Learner: performance on *any* train set is slightly better than chance prediction

• intended to answer a theoretical question, not as a practical way to improve learning

• tested in mid 90’s using not-so-weak learners

• works anyway!
Boosting

- Weight all training samples equally
- Train model on train set
- Compute error of model on train set
- Increase weights on train cases model gets wrong
- Train new model on re-weighted train set
- Re-compute errors on weighted train set
- Increase weights again on cases model gets wrong
- Repeat until tired (100+ iterations)
- Final model: weighted prediction of each model
Algorithm AdaBoost.M1
Input: sequence of m examples $\langle (x_1, y_1), \ldots, (x_m, y_m) \rangle$
with labels $y_i \in Y = \{1, \ldots, k\}$
weak learning algorithm WeakLearn
integer T specifying number of iterations
Initialization $D_t(i) = 1/m$ for all i.
Do for $t = 1, 2, \ldots, T$:
1. Call WeakLearn, providing it with the distribution D_t.
2. Get back a hypothesis $h_t : X \to Y$.
3. Calculate the error of h_t: $\epsilon_t = \sum_{i: h_t(x_i) \neq y_i} D_t(i)$.
 If $\epsilon_t > 1/2$, then set $T = t - 1$ and abort loop.
4. Set $\beta_t = \epsilon_t / (1 - \epsilon_t)$.
5. Update distribution D_t:
 $$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases}
\beta_t & \text{if } h_t(x_i) = y_i \\
1 & \text{otherwise}
\end{cases}$$
 where Z_t is a normalization constant (chosen so that D_{t+1}
will be a distribution).
Output the final hypothesis:
$$h_{fin}(x) = \arg \max_{y \in Y} \sum_{t: h_t(x) = y} \log \frac{1}{\beta_t}.$$
Boosting: Initialization

Algorithm AdaBoost.M1

Input: sequence of m examples $\langle (x_1, y_1), \ldots, (x_m, y_m) \rangle$
with labels $y_i \in Y = \{1, \ldots, k\}$
weak learning algorithm WeakLearn
integer T specifying number of iterations

Initialize $D_1(i) = 1/m$ for all i.
Do for $t = 1, 2, \ldots, T$:
1. Call **WeakLearn**, providing it with the distribution D_t.
2. Get back a hypothesis $h_t : X \rightarrow Y$.
3. Calculate the error of h_t:
 \[\epsilon_t = \sum_{i : h_t(x_i) \neq y_i} D_t(i). \]
 If $\epsilon_t > 1/2$, then set $T = t - 1$ and abort loop.
4. Set $\beta_t = \epsilon_t / (1 - \epsilon_t)$.
5. Update distribution D_t:
 \[D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases}
 \beta_t & \text{if } h_t(x_i) = y_i \\
 1 & \text{otherwise}
 \end{cases} \]
 where Z_t is a normalization constant (chosen so that D_{t+1} will be a distribution).
Boosting: Prediction

Output the final hypothesis:

\[h_{\text{fin}}(x) = \arg \max_{y \in Y} \sum_{t : h_t(x) = y} \log \frac{1}{\beta_t}. \]
Weight updates

• Weights for incorrect instances are multiplied by $1/(2 \text{Error}_i)$
 – Small train set errors cause weights to grow by several orders of magnitude

• Total weight of misclassified examples is 0.5

• Total weight of correctly classified examples is 0.5
Reweighting vs Resampling

- Example weights might be harder to deal with
 - Some learning methods can’t use weights on examples
 - Many common packages don’t support weights on the train
- We can resample instead:
 - Draw a bootstrap sample from the data with the probability of drawing each example is proportional to it’s weight
- Reweighting usually works better but resampling is easier to implement
Boosting Performance
Boosting vs. Bagging

• Bagging doesn’t work so well with stable models. Boosting might still help.

• Boosting might hurt performance on noisy datasets. Bagging doesn’t have this problem

• In practice bagging almost always helps.
Boosting vs. Bagging

• On average, boosting helps more than bagging, but it is also more common for boosting to hurt performance.

• The weights grow exponentially.

• Bagging is easier to parallelize.